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Cone Penetration Tip Resistance Deconvolution Utilizing 
Complex Cepstrum Analysis 

 

On June 22, 2018 Dr. Ross Boulanger gave a keynote lecture at the 4th International Symposium 

on Cone Penetration Testing (CPT'18) . The lecture was based upon the paper entitled “Inverse 

filtering procedure to correct cone penetration data for thin-layer and transition effects”. This 

lecture and paper were of great interest to BCE as the technical objective was very similar to the 

challenging and highly published seismic deconvolution problem. BCE has invested considerable 

time and resource in developing algorithms for seismic deconvolution and seismic blind 

deconvolution. The unique characteristics of the described cone penetration convolution “blurring” 

function is highly suitable for implementation of Complex Cepstrum Analysis (CCA). 

 

Cone Penetration Deconvolution Problem (after Boulanger and DeJong, 2018): 

 

The measured cone penetration model, in 

general, is written as eq. (1)  

 

 

where 

 

qm(z): is the measured cone penetration. 

qt(z):  is the true cone penetration. 

wc(z): is the “blurring” function.  

v(z): is additive noise, generally taken to be 

white with a Gaussian pdf. 

 :      denotes the convolution operation. 

 

An alternative mathematical representation of 

qm(z) defined in eq. (1) is given as  

 

 

where zmin and zmax denote the limits of the CPT 

sounding. 

 

 

 

 

 𝑞𝑚(𝑧)   =   𝑞𝑡(𝑧) ∗ 𝑤𝑐(𝑧) +  𝑣(𝑧) (1) 

 𝑞𝑚(𝑧) = ∫ 𝑞𝑡(𝜏)𝑤𝑐(𝑧 − 𝜏)𝑑𝜏 + 𝑣(𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

 (2) 

Figure 1. Schematic of thin layer effect for a sand layer 

embedded in a clay layer (after Boulanger and DeJong, 2018). 

 

Figure 2.  Illustration of the convolution of qt with the cone 

penetration “blurring” function to obtain qm at a given point in 

a layered profile (modified from Boulanger and DeJong, 2018). 

 



BCE Technical Note 29                  qt Estimation with CCA Page 2 
 

The discrete representation of eq. (2) is given 

where N is the length of the depth series. 

 

Figure 1 illustrates the effect the “blurring” function has on qt. Figure 2 illustrates the convolution 

of wc with qt to give qm at a given depth. Figure 2 clearly illustrates the typical form of wc where 

the red circles identify sharp points at interfaces which require very high bandwidth frequencies. 

This wc feature will be important within the application of CCA as will subsequently be outlined.  

Boulanger and DeJong (2018) outline that wc  is depth variant and nonlinear in that it is dependent 

on qt. Boulanger and DeJong (2018) utilize the following set of equations to iteratively obtain an 

estimate of qt denoted as qinv. 

Equation (7) is estimated iteratively by implementing eq. (8). In eq. (8), n denotes the nth iteration 

and 𝑞1
𝑖𝑛𝑣 = 𝑞𝑚. The iteration process is continued until the error criterion defined by eq. (9) is met 

or a maximum number of user specified iterations is reached. Boulanger and DeJong (2018) state 

that the methodology defined by eq. (8) is not well constrained without additional adjustments. 

They believe that this is due to higher-than-justifiable spatial frequencies that are higher than 

justifiable based on the data sampling interval or physical size of the cone. A somewhat ad hoc 

smoothing filter followed by a low-pass spatial filter are applied to address this concern.  

In general terms, it is surprising that iterative algorithm defined by eq. (8) has been shown to 

carry out the deconvolution process irrespective of the nonlinearity outlined by eq. (7). We believe 

this is most likely due to the case of qt ≈ qm. This assumption is supported be the fact that 𝒒𝟏
𝒊𝒏𝒗 =

𝒒𝒎. The implementation of eq. (8) would not be possible for the case of seismic deconvolution 

where the reflection series is significantly different from the recorded seismogram. The purpose 

of this technical note is to outline a technique for obtaining an estimate of qt without initializing 

𝑞1
𝑖𝑛𝑣 = 𝑞𝑚 and based upon the high bandwidth of wc.  

 

Seismic Deconvolution Problem: 

 

In seismology, the most important seismic model is, in general, written as 

 where 

s(t):   is the measured seismogram. 

b(t) :  is the seismic wave which is a superposition of earth and instrument responses.  

r(t):  is the reflectivity of the earth (reflection coefficients). 

v(t): is the additive noise, generally taken to be white with a Gaussian pdf. 
 :    denotes the convolution operation. 

 

 
𝑞𝑚(𝑘)   =   ∑ 𝑞𝑡(𝑖)𝑤𝑐(𝑘 − (𝑖 − 1))𝑘

𝑖=1   + 𝑣(𝑘),  𝑘 = 1,2 ⋯ 𝑁                                  (3) 

𝑑𝑞 = 𝑞𝑡 − 𝑞𝑚 (4) 𝑑𝑞 = 𝑞𝑡 − 𝑞𝑡 ∗ 𝑤𝑐(𝑞𝑡) (5) 

𝑞𝑡 = 𝑞𝑚 + 𝑑𝑞 (6) 𝑞𝑡 = 𝑞𝑚 + (𝑞𝑡 − 𝑞𝑡 ∗ 𝑤𝑐(𝑞𝑡)) (7) 

𝑞𝑛+1
𝑖𝑛𝑣 = 𝑞𝑚 + (𝑞𝑛

𝑖𝑛𝑣 − 𝑞𝑛
𝑖𝑛𝑣 ∗ 𝑤𝑐(𝑞𝑛

𝑖𝑛𝑣)) (8) 𝑒𝑟𝑟 =
∑|(𝑞𝑛+1

𝑖𝑛𝑣 −𝑞𝑛+1
𝑖𝑛𝑣 )

𝑖
| 

∑|(𝑞𝑚)𝑖|
=<  10−6   (9) 

 

 
𝑠(𝑡)   =  𝑏(𝑡) ∗ 𝑟(𝑡) +  𝑣(𝑡) (10) 
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The primary goal of seismic deconvolution is to remove the characteristics of the source wave 

from the recorded seismic time series, so that one is ideally left with only the reflection 

coefficients. The reflection coefficients identify and quantify the impedance mismatches between 

different geological layers that are of great interest to the geophysicist. This requires that the source 

wave is deconvolved from the seismogram. This goal is identical to that of estimating qt (i.e., 

reflection series) by deconvolving wc (i.e., source wave) from qm (noisy seismogram). A very 

challenging and yet common seismic deconvolution problem is where the source wave is unknown 

and has the potential for time variation. This is referred to as blind seismic deconvolution (BSD) 

and identifies the case where we have one known (measured seismogram with additive noise) and 

two unknowns (source wave and reflection coefficients). 

Seismic deconvolution is one of the most extensively study problem in geophysics with a vast 

amount of related publications. There are many techniques of seismic deconvolution that can be 

implemented so that an optimal estimate is made of the earth model. The majority of the standard 

seismic deconvolution methods utilize the steady state Wiener digital filter that assumes a 

minimum phase source wave. Other techniques implement inverse theory, minimum entropy 

deconvolution, adaptive deconvolution, principle phase decomposition, and Complex Cepstrum 

Analysis (CCA).  Many of these deconvolution techniques are affected by the band-limited nature 

of the source wave. The one major advantage Cone Penetration Tip Resistance Deconvolution 

(CPTRD) is that the “blurring” function wc has a high bandwidth signal as was illustrated in Fig. 

2. This makes CCA a perfect candidate for incorporation into CPTRD. 

 

Complex Cepstrum Analysis: 

 

The governing equations defining CCA are summarized as below. Using the identity that the 

convolution operation in the time domain is a multiplication in the frequency domain and taking 

the frequency transform of eq. (10) (ignoring the noise term) gives 

In eq. (11), S(ω), B(ω), and R(ω) are the Fourier transforms of s(t), b(t), and r(t), respectively. 

Representing the Fourier transform of the processes in eq. (11) by their magnitudes and phases 

results in 

In eq. (12) γ(ω) is the phase of the process. Taking the Ln of both sides of eq. (12) and solving 

for R(ω) gives 

the source wave (i.e., “blurring” function b(t)) and the noise free output seismogram (i.e., s(t) 

without measurement noise) allows us to deterministically determine the reflection series (i.e., 

r(t)). In CCA, eqs. (13a) and (13b) are applied on the recorded seismogram (s(t)) and known source 

wave (i.e., b(t)) to give the frequency spectrum of the  reflection series (i.e., R(ω))). The inverse 

Fourier transform is then applied on R(ω) to give the desired reflection series (r(t)). 

 

 

 

 
𝑆(𝜔)   =  𝐵(𝜔)𝑅(𝜔) (11) 

 

 
|𝑆(𝜔)|𝑒𝛾𝑆(𝜔)𝑖   =   |𝐵𝑆(𝜔)|𝑒𝛾𝐵(𝜔)𝑖 × |𝑅(𝜔)|𝑒𝛾𝑅(𝜔)𝑖 (12) 

 

 

𝐿𝑛|𝑅(𝜔)|   =  𝐿𝑛|𝑆(𝜔)| − 𝐿𝑛|𝐵(𝜔)| 
𝛾𝑅(𝜔)   =   𝛾𝑆(𝜔) − 𝛾𝐵(𝜔) 

(13a) 

(13b) 
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Figure 7.  frequency spectrum ratio between source wave of Fig 

3(a) and seismogram of Fig. 5(a). 

For example, Fig. 3(a) illustrates a simulated zero phase Klauder source wave (Vibroseis type 

source wave) which has a bandwidth of 4Hz to 140Hz as is shown in Fig. 3(b). The Klauder source 

wave is then convolved with the reflection series illustrated in Fig. 4(a) to give the output in Fig. 

5(b). Applying eqs. 13(a) and 13(b) on the output shown in Figs. 3(a) and 5(a) and taking the 

inverse Fourier transform gives the results illustrated in Fig. 6.  As is illustrated in Fig. 6, the 

reflection series is recovered exactly. Figure 7 illustrates the frequency ratio between seismogram 

and source wave.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Simulation of the zero phase Klauder source wave (a) and corresponding frequency spectrum (b). 

 

Figure 4.  Reflection series (a) and corresponding frequency spectrum (b). 

 

Figure 5.  Simulated seismogram (a) and corresponding frequency spectrum (b). 

 

Figure 6.  CSA estimated reflection series. 
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The CCA works ideally in deconvolution if the seismogram is noise free. Equations (11) to 13 

are updated below for the case measurement noise is considered. The error term in eq. (17) (i.e.,  
𝐿𝑛|1 + 𝑉(𝜔) (𝑆(𝜔)𝑅(𝜔))⁄ |) can result in a dramatic degradation in the performance of CCA. 

The performance of CCA in the presence of measurement noise is directly dependent upon the 

frequency ratio of the source wave (“blurring” function) to the seismogram. The reflection series 

is a high bandwidth signal (see Fig. 4(b)); therefore, if the frequencies outside of the source wave’s  

bandwidth (e.g., 4 Hz to 120 Hz (Fig. 3(b)) are negligible, then the CCA cannot estimate the 

reflection series r(t). This is evident from the noise term ratio 𝑉(𝜔) (𝐵(𝜔)𝑅(𝜔))⁄  where 𝐵(𝜔) →

0 for frequencies outside its bandwidth and the noise term ratio becomes very large. 

For example, Fig. 7 illustrates the Klauder source wave / seismogram frequency  ratio for  the 

case where no noise was present in the seismogram. As is shown in Fig. 7, there is measurable 

Klauder source wave to seismogram frequency information for all frequencies within the Nyquist. 

Fig. 8(a) illustrates the seismogram of Fig. 5(a) with measurement noise added. Figure 8(b) 

illustrates the frequency ratio of the source wave / seismogram for the output shown in Fig. 8(a).  

 

 

 

 

 

 

 

 

 

As is shown in Fig. 8(b), frequency  information above 120 Hz has almost been completely lost. 

This is due to the Klauder source wave having 

minimal signal information outside of the frequency 

band of 4 Hz to 120 Hz. Implementing CCA on the 

seismogram of Fig. 8(a) results in the nonsensical  

reflection series estimates illustrated in Fig. 10.  

If the source wave had significant frequency 

information for frequencies ranging from 0 Hz to the 

Nyquist resulting in a broadband source wave / 

seismogram frequency ratio, then the CCA would 

produce desirable results. For example, consider the 

one-sided Klauder source wave illustrated in Figure 

11(a). The sharpness of the peak response requires a 

𝑆(𝜔)   =  𝐵(𝜔)𝑅(𝜔) + 𝑉(𝜔) (14) 

𝑆(𝜔)   =  𝐵(𝜔)𝑅(𝜔)(1 + 𝑉(𝜔) 𝐵(𝜔)𝑅(𝜔)⁄ ) (15) 

𝐿𝑛|𝑍(𝜔)|   =  𝐿𝑛|𝐵(𝜔)| + 𝐿𝑛|𝑅(𝜔)| +  𝐿𝑛|1 + 𝑉(𝜔) (𝐵(𝜔)𝑅(𝜔))⁄ | (16) 

𝐿𝑛|𝑅(𝜔)|   =  𝐿𝑛|𝑆(𝜔)| − 𝐿𝑛|𝐵(𝜔)| −  𝐿𝑛|1 + 𝑉(𝜔) (𝐵(𝜔)𝑅(𝜔))⁄ | (17) 

Figure 8.  (a) Simulated seismogram of Fig 5(a) with measurement noise added. (b) Frequency spectrum ratio between source 

wave of Fig 3(a) and seismogram of Fig. 8(a). 

 

Figure 10.  CSA estimated reflection series when 

measurement noise present. 
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large bandwidth of 

frequencies as is 

illustrated in Fig. 11(b). 

The resulting CCA 

estimate for this data set is 

illustrated in Fig. 12. 

Comparing Fig. 12 and 6, 

it is evident that there is 

very good agreement with 

the true reflection series.  

 

Estimating qt with CCA: 

 

The form of the cone 

penetration “blurring” 

function wc is ideally 

suited for CCA as was 

illustrated in Fig. 2. Figure 

2 illustrated the typical 

form of wc where the red 

circles identified sharp 

points at interfaces which 

require very high 

bandwidth frequencies. 

The governing equations 

for CPT cone bearing 

deconvolution are nearly 

identical to that of seismic 

deconvolution where  

qm→s(t), wc→b(t), r(t)→qt, 

Qm(ω)→S(ω), Wc(ω)→B(ω), 

and R(ω)→Qt(ω). The 

proposed CCA algorithm for estimating qt  from qm and wc(q
t) is outlined below where eq. (8) is 

updated to take into account a direct estimate of qt when initializing the estimation iteration of eq. 

(8). In this case 𝑞1
𝑖𝑛𝑣 = 𝑞𝑡(𝑧) where is calculated using eqs. (18), (19) and (20). For the next 

subsequent iteration (i.e., n = n+1), wc(q
t, z) is calculated utilizing the previous estimate of qinv 

(i.e., 𝑤𝑐(𝑧, 𝑞𝑛−1
𝑖𝑛𝑣 )) and a new estimate of  𝑞𝑛+1

𝑖𝑛𝑣  is obtained. This iteration process is continued until 

the error criterion defined by eq. (9) is met or a maximum number of user specified iterations is 

reached. It is also foreseen that a parameter estimation component could be incorporated into the 

CPTRD so that the wc model parameters (e.g., mz and mq) could also be refined.  

BCE will be shortly encoding an algorithm which incorporates the proposed CCA cone 

penetration tip resistance deconvolution algorithm. This technical note will subsequently be 

updated with results from a challenging test bed simulation.  

 

 

 

Figure 11.  Simulation of the one-sided Klauder source wave (a) and 

corresponding frequency spectrum (b). 

 

Figure 12.  CSA estimated reflection series from seismogram generated with a one side 

Klauder source wave and the reflection series illustrated in Figs. 4 and 6. 
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𝑞𝑚(𝑧)   =   𝑞𝑡(𝑧) ∗ 𝑤𝑐(𝑧) +  𝑣(𝑧) (1) 

 

𝑒𝑟𝑟 =
∑ |(𝑞𝑛+1

𝑖𝑛𝑣 − 𝑞𝑛+1
𝑖𝑛𝑣 )

𝑖
| 

∑|(𝑞𝑚)𝑖|
=<  10−6 

(9) 

𝑄𝑚(𝜔)  = 𝐹(𝑞𝑚) 

𝑄𝑡(𝜔)  = 𝐹(𝑞𝑡) 

𝑊𝑐(𝜔)  = 𝐹(𝑤𝑐) 

where F denotes the  Fourier transform 

(18a) 

(18b) 

(18c) 

 

𝐿𝑛|𝑄𝑡(𝜔)|   =  𝐿𝑛|𝑄𝑚(𝜔)| − 𝐿𝑛|𝐵(𝜔)| 
𝛾𝑄𝑡(𝜔)   =   𝛾𝑄𝑚(𝜔) − 𝛾𝑤𝑐

(𝜔) 
(19a) 

(19b) 

𝑞𝑡(𝑧)  = 𝐹−1(𝑄𝑡(𝜔)) 

where F-1 denotes the inverse Fourier 

transform 

(20)   

BCE’s mission is to provide our clients around the world with state-of-the-art 

seismic data acquisition and analysis systems, which allow for better and faster 

diagnostics of the sub-surface. Please visit our website (www.bcengineers.com) or 

contact our offices for additional information: 

e-mail: info@bcengineers.com 

phone: Canada:  (604) 733 4995 – USA: (903) 216 5372  

http://www.bcengineers.com/
mailto:info@bcengineers.com

