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Cone Penetration Tip Resistance Deconvolution Utilizing 
Complex Cepstrum Analysis 

 

At the 4th International Symposium on Cone Penetration Testing (CPT'18) a paper was 

presented on the “Inverse filtering procedure to correct cone penetration data for thin-layer and 

transition effects”.  The topic of this paper has great similarities with seismic deconvolution, for 

which BCE has developed algorithms both for seismic deconvolution and seismic blind 

deconvolution. Based on that work this technical note will suggest an enhancement to the 

proposed approach in the paper by utilizing the Complex Cepstrum Analysis (CCA). 

 

Introduction - Cone Penetration Deconvolution Problem (after Boulanger and DeJong, 2018) 

 

 
 

When performing a Cone Penetration Test (CPT) layers above and below the cone tip affect the 

measured tip resistance as illustrated in Figure 1.  The measured cone penetration tip resistance 

qm can then be described as 

 𝑞𝑚(𝑧)   =   𝑞𝑡(𝑧) ∗ 𝑤𝑐(𝑧) +  𝑣(𝑧) (1) 

where 

qm(z)  is the measured cone penetration tip resistance 

qt(z)  is the true cone penetration tip resistance 

wc(z)  is the “blurring” function  

v(z)  is additive noise, generally taken to be white with a Gaussian pdf 
  is the convolution operation. 

 

Equation (1) can also be represented as 

 

 𝑞𝑚(𝑧) = ∫ 𝑞𝑡(𝜏)𝑤𝑐(𝑧 − 𝜏)𝑑𝜏 + 𝑣(𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛
 (2) 

 

where zmin and zmax are the limits of the CPT sounding. 

 

Figure 1. Schematic of thin layer effect for a 

sand layer embedded in a clay layer (after 

Boulanger and DeJong, 2018). 
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The discrete representation of eq. (2) is then 

 

 𝑞𝑚(𝑘)   =   ∑ 𝑞𝑡(𝑖)𝑤𝑐(𝑘 − (𝑖 − 1))𝑘
𝑖=1   + 𝑣(𝑘),  𝑘 = 1,2 ⋯ 𝑁 (3) 

 

where N is the length of the depth series. 

 

 
 

Figure 1 illustrates the effect the “blurring” function wc has on qt, and in Fig. 2 the convolution 

of wc with qt to give qm at a given depth is shown. Figure 2 also illustrates the typical form of wc 

where the red circles identify sharp points at interfaces which require very high bandwidth 

frequencies. This wc feature will be important within the application of CCA as will be outlined 

below. 

 

Boulanger and DeJong (2018) describe that wc is depth variant and nonlinear in that it is 

dependent on qt, and then utilize the following set of equations to iteratively obtain an estimate 

of qt denoted as qinv. 

Equation (7) is estimated iteratively by implementing eq. (8). In eq. (8), n denotes the nth 

iteration and 𝑞1
𝑖𝑛𝑣 = 𝑞𝑚. The iteration process is continued until the error criterion defined by eq. 

(9) is met or a maximum number of user specified iterations is reached. In their paper the authors 

state that this methodology is not well constrained without additional adjustments, and they 

believe that this is due to the fact that the spatial frequencies are higher than justifiable based on 

the data sampling interval or physical size of the cone. To address this the authors apply a 

somewhat ad-hoc smoothing filter followed by a low-pass spatial filter. 

 

In our opinion it is somewhat surprising that the iterative algorithm defined by eq. (8) has been 

shown to carry out the deconvolution process irrespective of the nonlinearity outlined by eq. (7). 

We believe this is most likely because qt ≈ qm, which is supported by the fact that 𝒒𝟏
𝒊𝒏𝒗 = 𝒒𝒎. 

For that reason the implementation of eq. (8) would not be possible for seismic deconvolution 

𝑑𝑞 = 𝑞𝑡 − 𝑞𝑚 (4) 𝑑𝑞 = 𝑞𝑡 − 𝑞𝑡 ∗ 𝑤𝑐(𝑞𝑡) (5) 

𝑞𝑡 = 𝑞𝑚 + 𝑑𝑞 (6) 𝑞𝑡 = 𝑞𝑚 + (𝑞𝑡 − 𝑞𝑡 ∗ 𝑤𝑐(𝑞𝑡)) (7) 

𝑞𝑛+1
𝑖𝑛𝑣 = 𝑞𝑚 + (𝑞𝑛

𝑖𝑛𝑣 − 𝑞𝑛
𝑖𝑛𝑣 ∗ 𝑤𝑐(𝑞𝑛

𝑖𝑛𝑣)) (8) 𝑒𝑟𝑟 =
∑|(𝑞𝑛+1

𝑖𝑛𝑣 −𝑞𝑛+1
𝑖𝑛𝑣 )

𝑖
| 

∑|(𝑞𝑚)𝑖|
=<  10−6   (9) 

Figure 2.  Illustration of the convolution of qt 

with the cone penetration “blurring” function 

to obtain qm at a given point in a layered 

profile (modified from Boulanger and DeJong, 

2018). 

 



BCE Technical Note 29                  qt Estimation with CCA Page 3 
 

where the reflection series is significantly different from the recorded seismogram. The approach 

for seismic deconvolution as described in the next section also provide an alternate technique for 

obtaining an estimate of qt without initializing 𝑞1
𝑖𝑛𝑣 = 𝑞𝑚 and based upon the high bandwidth of 

wc.  

 

Seismic Deconvolution 

 

In seismology, the measured seismogram s(t) can be described as follows 

 

 𝑠(𝑡)   =  𝑏(𝑡) ∗ 𝑟(𝑡) +  𝑣(𝑡) (10) 

where 

s(t)  is the measured seismogram. 

b(t)  is the seismic wave which is a superposition of earth and instrument responses.  

r(t)  is the reflectivity of the earth (reflection coefficients). 

v(t)  is the additive noise, generally taken to be white with a Gaussian pdf. 
   denotes the convolution operation. 

 

The primary goal of seismic deconvolution is to remove the characteristics of the source wave 

from the recorded seismic time series, so that one is ideally left with only the reflection 

coefficients. These reflection coefficients identify and quantify the impedance mismatches 

between different geological layers that are of great interest to the geophysicist. Thus the 

objective is that the source wave is deconvolved from the seismogram, which is the same as that 

of estimating qt (i.e., reflection series) by deconvolving wc (i.e., source wave) from qm (noisy 

seismogram) in cone penetration deconvolution. A very challenging and yet common seismic 

deconvolution problem is where the source wave is unknown and has the potential for time 

variation. This is referred to as blind seismic deconvolution (BSD) and represents the case where 

we have one known (measured seismogram with additive noise) and two unknowns (source 

wave and reflection coefficients).   

Seismic deconvolution has been studied extensively and there are many techniques that can be 

applied to resolve it. The majority of these techniques utilize the steady state Wiener digital filter 

that assumes a minimum phase source wave, while other techniques implement inverse theory, 

minimum entropy deconvolution, adaptive deconvolution, principle phase decomposition, and 

Complex Cepstrum Analysis (CCA).  The CCA method is perfectly suitable for situations where 

the source wave has a high bandwidth as is the case for the “blurring” function wc in Cone 

Penetration Tip Resistance Deconvolution (CPTRD). This makes CCA a perfect candidate for 

incorporation into CPTRD. 

 

Complex Cepstrum Analysis: 

 

The governing equations defining CCA are summarized as below. Using the identity that the 

convolution operation in the time domain is a multiplication in the frequency domain and taking 

the frequency transform of eq. (10) (ignoring the noise term) gives 

 

 𝑆(𝜔)   =  𝐵(𝜔)𝑅(𝜔) (11) 

 

where S(ω), B(ω), and R(ω) are the Fourier transforms of s(t), b(t), and r(t), respectively.  
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Representing the Fourier transform of the processes in eq. (11) by their magnitudes and phases 

results in 

 

 |𝑆(𝜔)|𝑒𝛾𝑆(𝜔)𝑖   =   |𝐵𝑆(𝜔)|𝑒𝛾𝐵(𝜔)𝑖 × |𝑅(𝜔)|𝑒𝛾𝑅(𝜔)𝑖 (12) 

 

where γ(ω) is the phase of the process. 

 

Taking the natural logarithm of both sides of eq. (12) and solving for R(ω) gives 

 

 𝐿𝑛|𝑅(𝜔)|   =  𝐿𝑛|𝑆(𝜔)| − 𝐿𝑛|𝐵(𝜔)| (13a) 

 

 𝛾𝑅(𝜔)   =   𝛾𝑆(𝜔) − 𝛾𝐵(𝜔) (13b) 

 

In CCA, eqs. (13a) and (13b) are applied on the recorded seismogram (s(t)) and known source 

wave (b(t)) to give the frequency spectrum of the reflection series (R(ω))). The inverse Fourier 

transform is then applied on R(ω) to give the desired reflection series (r(t)). 

 

To illustrate this process a simulated zero phase Klauder source wave (Vibroseis type source 

wave) is shown in Fig. 3(a) with the wave’s bandwidth of 4 - 140Hz shown in Fig. 3(b). The 

Klauder source wave is then convolved with the reflection series illustrated in Fig. 4(a) to give 

the output in Fig. 5. Applying eqs. 13(a) and 13(b) on the output shown in Figs. 3(a) and 5(a) and 

taking the inverse Fourier transform generates the outcome shown in Fig. 6, which reflects that 

the reflection series is recovered accurately. Finally Fig. 7 illustrates the frequency ratio between 

seismogram and source wave.  

 

 

 

 

 

 

 

 

 

  

Figure 3.  Simulation of the zero phase Klauder source wave (a) and corresponding frequency spectrum (b). 

 

Figure 4.  Reflection series (a) and corresponding frequency spectrum (b). 
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Figure 7.  Frequency spectrum ratio between source 

wave of Fig 3(a) and seismogram of Fig. 5(a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CCA works ideally in deconvolution if the seismogram is noise free, which is obviously not 

the case, and therefore eq. (11) to 13(a) are updated below to reflect measurement noise.  

With measurement noise the performance of CCA is directly dependent upon the frequency ratio 

of the source wave to the seismogram. The reflection series is a high bandwidth signal (see Fig. 

4(b)) and that means that if the frequencies outside of the source wave’s bandwidth (e.g., 4 Hz to 

120 Hz (as shown in Fig. 3(b)) are negligible, then the CCA cannot estimate the reflection series 

r(t). This is evident from the last term in eq. (17) (i.e., 𝐿𝑛|1 + 𝑉(𝜔) (𝑆(𝜔)𝑅(𝜔))⁄ |). For 

example, Fig. 7 illustrates the Klauder source wave / seismogram frequency ratio without noise 

present in the seismogram, which indicates that there is measurable Klauder source wave to 

seismogram frequency information for all frequencies within the Nyquist. Figure 8(a) shows the 

seismogram of Fig. 5(a) with a small amount of measurement noise added, and Fig. 8(b) then 

gives the associated frequency ratio of the source wave / seismogram. 

 

 

 

 

 

 

 

𝑆(𝜔)   =  𝐵(𝜔)𝑅(𝜔) + 𝑉(𝜔) (14) 

𝑆(𝜔)   =  𝐵(𝜔)𝑅(𝜔)(1 + 𝑉(𝜔) 𝐵(𝜔)𝑅(𝜔)⁄ ) (15) 

𝐿𝑛|𝑍(𝜔)|   =  𝐿𝑛|𝐵(𝜔)| + 𝐿𝑛|𝑅(𝜔)| +  𝐿𝑛|1 + 𝑉(𝜔) (𝐵(𝜔)𝑅(𝜔))⁄ | (16) 

𝐿𝑛|𝑅(𝜔)|   =  𝐿𝑛|𝑆(𝜔)| − 𝐿𝑛|𝐵(𝜔)| −  𝐿𝑛|1 + 𝑉(𝜔) (𝑆(𝜔)𝑅(𝜔))⁄ | (17) 

Figure 5.  Simulated seismogram (a) and corresponding frequency spectrum (b). 

 

Figure 6.  CSA estimated reflection series. 

 

Figure 8.  (a) Simulated seismogram of Fig 5(a) with measurement noise added. (b) Frequency spectrum ratio 

between source wave of Fig 3(a) and seismogram of Fig. 8(a). 
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As is shown in Fig. 8(b), there is hardly 

any frequency information above 120 

Hz, simply because the Klauder source 

had minimal signal information outside 

of the frequency band of 4 Hz to 120 

Hz. Implementing CCA on the 

seismogram of Fig. 8(a) would results 

in the nonsensical reflection series 

estimates as illustrated in Fig. 9. If on 

the other hand the source wave had 

significant frequency information for 

frequencies ranging from 0 Hz to the 

Nyquist (resulting in a broadband 

source wave / seismogram frequency 

ratio), then the CCA would produce 

desirable results. To illustrate this a 

one-sided Klauder source wave is 

shown in Fig. 10(a), and the sharpness 

of the peak response requires a large 

bandwidth of frequencies as is 

illustrated in Fig. 10(b). The resulting 

CCA estimate for this data set is then 

given in Fig. 11. Comparing Fig. 11 

and 6, it is evident that there is very 

good agreement with the true reflection 

series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimating qt with CCA: 

 

The form of the cone penetration “blurring” function wc is ideally suited for CCA as was 

illustrated in Fig. 2. This figure illustrated the typical form of wc where the red circles identified 

sharp points at interfaces, similar to the one shown in Fig. 10a, which require very high 

bandwidth frequencies. 

Figure 9.  CSA estimated reflection series when 

measurement noise present. 

 

Figure 10.  Simulation of the one-sided Klauder source wave (a) 

and corresponding frequency spectrum (b). 

 

Figure 11.  CSA estimated reflection series from seismogram generated with a one 

side Klauder source wave and the reflection series illustrated in Figs. 4 and 6. 
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Consequently eq. 14 – 17 can be easily adopted for CPT cone bearing deconvolution by making 

the following substitutions: 

 

qm→s(t), wc→b(t), r(t)→qt, Qm(ω)→S(ω), Wc(ω)→B(ω), and R(ω)→Qt(ω).  

 

The proposed CCA algorithm for estimating qt  from qm and wc(q
t) is outlined below where eq. 

(8) is updated to take into account a direct estimate of qt when initializing the estimation iteration 

of eq. (8). In this case 𝑞1
𝑖𝑛𝑣 = 𝑞𝑡(𝑧) where is calculated using eqs. (18), (19) and (20). For each 

subsequent iteration (i.e., n = n+1), wc(q
t, z) is calculated utilizing the previous estimate of qinv 

(i.e., 𝑤𝑐(𝑧, 𝑞𝑛−1
𝑖𝑛𝑣 )) and a new estimate of  𝑞𝑛+1

𝑖𝑛𝑣  is obtained. This iteration process is continued 

until the error criterion defined by eq. (9) is met or a maximum number of user specified 

iterations is reached. It is also foreseen that a parameter estimation component could be 

incorporated into the CPTRD so that the wc model parameters (e.g., mz and mq) could also be 

refined.  

 

where F denotes the  Fourier transform and F-1 denotes the inverse Fourier transform 

 

  

𝑞𝑚(𝑧)   =   𝑞𝑡(𝑧) ∗ 𝑤𝑐(𝑧) +  𝑣(𝑧) (1) 𝑒𝑟𝑟 =
∑ |(𝑞𝑛+1

𝑖𝑛𝑣 − 𝑞𝑛+1
𝑖𝑛𝑣 )

𝑖
| 

∑|(𝑞𝑚)𝑖|
=<  10−6 (9) 

𝑄𝑚(𝜔)  = 𝐹(𝑞𝑚) 

𝑄𝑡(𝜔)  = 𝐹(𝑞𝑡) 

𝑊𝑐(𝜔)  = 𝐹(𝑤𝑐) 

(18a) 

(18b) 

(18c) 

𝐿𝑛|𝑄𝑡(𝜔)|   =  𝐿𝑛|𝑄𝑚(𝜔)| − 𝐿𝑛|𝐵(𝜔)| 
𝛾𝑄𝑡(𝜔)   =   𝛾𝑄𝑚(𝜔) − 𝛾𝑤𝑐

(𝜔) 
(19a) 

(19b) 

𝑞𝑡(𝑧)  = 𝐹−1(𝑄𝑡(𝜔)) (20)   
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April 29, 2020 Update: 

 

After extensive analysis and implementation of the equations outlined in the referenced paper it 

was determine that the convolution operation (equations (1), (2), (10), (12) and (13) of 

referenced paper) was not applied. Instead a simple sum weighted window is implemented. In 

this approach the blurring function wc is not convolved with qt but it simply is multiplied with wc 

over the wc window length. 

 

 

𝑞𝑚(𝑖) = ∑ 𝑤𝑐(𝑗) × 𝑞𝑡(∆𝑞𝑡 + 𝑗)

60∗(
𝑑𝑐
∆

)

𝑗=1

 

 

∆𝑞𝑡= (𝑖 − ∆𝑤𝑐),   ∆𝑤𝑐= 30 ∗ (
𝑑𝑐

∆
)    

 

∆ is the 𝑞𝑡 depth sampling rate 

 

(21) 

 

Clearly since there isn't a convolution applied to qt - any deconvolution algorithm will not work 

and CCA is not applicable. BCE is going to instead implement a Particle Filter (PF) type 

formulation to address the challenging problem of extracting qt from qm. This PF formulation 

will be similar to the algorithm outlined in Baziw, E. and Verbeek, G. (2012), “Passive (Micro-)  

Seismic Event Detection by Identifying Embedded “event” Anomalies within Statistically 

Describable Background Noise”, Pure appl. geophys., vol. 169, Issue 12, pp 2107-2126. 

 

 

 

 

Erick Baziw 

Gerald Verbeek 

 

 

 

BCE’s mission is to provide our clients around the world with state-of-the-art 

geotechnical signal processing systems, which allow for better and faster 

diagnostics of the sub-surface. Please visit our website (www.bcengineers.com) or 

contact our offices for additional information: 

e-mail: info@bcengineers.com 

phone: Canada:  (604) 733 4995 – USA: (903) 216 5372  
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