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ABSTRACT: Cone penetration testing (CPT) is an important and widely used geotechnical in-situ test for 
assessing soil properties and mapping soil profiles. CPT consists of pushing at a constant rate an electronic 
cone into penetrable soils and recording the resistance to the cone tip or cone bearing (qm). These values 
(after correction for the pore water pressure to get qt) are utilized to characterize the soil profile along with 
measured sleeve friction and pore pressure. The qm measurements can have significant fluctuations when 
penetrating sandy, silty gravelly soils, resulting in “high” peaks due to interbedded gravels and stones and 
“low” peaks due to softer materials or local pore pressure build-up. Furthermore, the qm values are blurred 
and/or averaged which results in the inability to identify thin layers and the distortion of the soil profile char­
acterization. Baziw Consulting Engineers has invested considerable resources in addressing these two qm 

measurement challenges. The qmKF algorithm was developed to address the additive measurement noise. In 
this case the dynamics of qm are modeled within a state-space mathematical formulation and a Kalman filter 
is then utilized to obtain optimal estimates of qm. The qmHMM algorithm implements a hidden Markov model 
smoother so that true cone bearing are obtained from the averaged/blurred qm values. This paper outlines the 
integration of the qmKF and qmHMM algorithms and demonstrates the performance first with test bed simula­
tions (to show the functionality of the algorithm) and then through the analysis of various actual qm data sets. 

1 INTRODUCTION 

1.1 Cone bearing measurements 

The Cone Penetration Test (CPT) is a geotechnical in-
situ tool which is utilized to identify and characterize 
sub-surface soils (Lunne et al., 1997; Robertson, 
1990; ASTM D6067, 2017). In CPT a cone penetra­
tion rig pushes the steel cone vertically into the 
ground at a standard rate and data are recorded at 
regular intervals during penetration. The cone has 
electronic sensors to measure penetration resistance at 
the tip (qm) and friction in the shaft (friction sleeve) 
during penetration. A CPT probe equipped with 
a pore-water pressure sensor is called a piezo-cone 
(CPTU cones). For piezo-cones with the filter element 
right behind the cone tip (the so-called u2 position) it 
is standard practice to correct the recorded tip resist­
ance for the impact of the pore pressure on the back 
of the cone tip. This corrected cone tip resistance is 
normally referred to as qt. The distortions which 
effect the cone tip measurements are two-fold: 1) the 
cone tip resistance are smoothed/averaged (Boulanger 
and DeJong, 2018; Baziw and Verbeek, 2021a) where 
cone tip values measured at a particular depth are 
affected by values above and below the depth of inter­
est, and 2) the cone bearing measurements are suscep­
tible to anomalous peaks and troughs due to the 
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relatively small diameter cone tip penetrating sandy, 
silty and gravelly soils (Baziw and Verbeek, 2021b). 

1.2 Cone bearing smoothing/averaging 

The measured cone resistance at a particular depth is 
an averaged/smoothed measurement of the true 
values qv above and below the depth of interest 
(Boulanger and DeJong, 2018; Robertson, 1990; 
Baziw and Verbeek, 2021a, 2021b). Mathematically 
the measured cone tip resistance qm is described as 
(Baziw and Verbeek, 2021a) 

where 
d the cone depth 
dc the cone tip diameter 
Δqm the qm sampling rate 
qm(d) the measured cone tip resistance 
qv(d) the true cone tip resistance (prior to pore 

water pressure correction) 
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wc(d) the qv(d) averaging function 
v(d) additive noise, generally taken to be white 
with a Gaussian pdf 

In equation (1) it assumed that wc averages qv 

over 60 cone diameters centered at the cone tip. Bou­
langer and DeJong (Boulanger and DeJong, 2018) 
outline how to calculate wc below (after correcting 
the equation for w1 (Baziw and Verbeek, 2021a)): 

where: 
0z the depth relative to the cone tip normalized by 
the cone diameter 
0z50 the normalized depth relative to the cone tip 
where w1 = 0.5 C1 

The cone penetration averaging function wc for 
varying q =qt;z0¼0 ratios is illustrated in Figure 1. 

t;z 0

1.3 Cone bearing measurement noise 

The smoothed/averaged cone bearing measurement 
qm given by eq. (1) can also contain sharp anomalous 
and spurious peaks and troughs (Lunne, Robertson 
and Powell, 1997) 

These anomalous and spurious cone bearing 
measurements are due to the relatively small diam­
eter cone tip penetrating sandy, silty and gravelly 
soils. As illustrated in Figure 2, the “high” peaks 

result from the penetration of interbedded gravels 
and stones and the “low” peaks results from the 
penetration of softer materials or local pore pressure 
build-up. Figure 3 illustrates an example of a cone 
bearing profile which contains significant anomal­
ous/spurious qm data from approximate depths 10m 
to 18m and 22m to 30m. There is also significant 
pore pressure variability at these depths. 

Figure 2. Schematic of anomalous/spurious cone bearing 
data (after Mortensen and Sorensen, 1991). 

Figure 3. Combined results of piezocone test and nuclear 
density test at Gullfaks C in the North Sea (Tjelta et al. 1985). 

Figure 1. Schematic of thin layer effect for a sand layer 
embedded in a clay layer (Boulanger and DeJong, 2018). 
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2 FILTER FORMULATION 

2.1	 qmHMM algorithm formulation 

The initial algorithm developed by Baziw and Verbeek 
(2021a) (the so called qmHMM-IFM) to address the 
smoothing/averaging of cone bearing measurements 
(eq. (1)) combined a Bayesian recursive estimation 
(BRE) Hidden Markov Model (HMM) filter with Itera­
tive Forward Modelling (IFM) parameter estimation in 
a smoother formulation. The qmHMM-IFM provided 
estimates of the true qv values from the measured 
blurred values. In recent modifications and enhance­
ments of the qmHMM-IFM it was possible to drop the 
IFM portion of the algorithm. This was predominantly 
accomplished by refining the HMM filter parameters. 

The HMM filter (also termed a grid-based filter) 
has a discrete state-space representation and has 
a finite number of states (Arulampalam et al., 2002). 
In the HMM filter the posterior PDF is represented 
by the delta function approximation as follows: 

i iwhere xk�1 and wk�1jk�1, i =  1,…,Ns, represent  
the fixed discrete states and associated condi­
tional probabilities, respectively, at time index 
k-1, and  Ns the number of particles utilized. In 
the case of the  qmHMM algorithm the HMM dis­
crete states represent possible qv values where 

Table 1. HMM filtering algorithm. 

Step Description Mathematical Representation 

1	 Initialization 
(k=0) – initial­
ize particle 
weights. 

2	 Prediction ­
predict the 
weights. 

3	 Update ­
update the 
weights. 

4	 Obtain opti- x̂k ≈ 
P

i
N
¼
s 
1 wk

i 
jkxk

i & (7) 
mal minimum 
variance esti­
mate of the 
state vector 
and corres­
ponding error 
covariance. 

5 	  Let k  = k+1  
& iterate to 
step 2. 

In the above equations it is required that the likelihood pdf 
i	 i jpðzkjxkÞ and the transitional probabilities pðxk jxk�1Þ be 

known and specified. 

maximum, minimum and resolution values are 
specified. The HMM governing equations are 
outlined in Table 1. 

The qmHMM algorithm implements a BRE 
smoother. BRE smoothing uses all measurements 
available to estimate the state of a system at a certain 
time or depth in the qv estimation case (Arulampa­
lam et al., 2002; Baziw and Verbeek, 2021a; Gelb, 
1974). This requires both a forward and backward 

Ffilter formulation. The forward HMM filter (q̂k ) pro­
cesses measurement data (qm) above the cone tip 

in (1)). Next the backward 
HMM filter is implemented, where the filter 
recurses through the data below the cone tip 

in (1)) starting at the final 
qm value. The optimal estimate for qvis then 
defined as 

where the index k represents each qm measurement. 
In both the forward and backward HMM filter for­

mulation a bank of discrete qvvalues (i = 1 to N) 
varying from low (qtL) to high (qtH) and 
a corresponding qt resolution qtR is specified. The 
required number of fixed grid HMM states is given 
as NS = (qtH - qtL)/qtR. In Table 1 the notation of the 
states xi is mapped to qi to reflect the bank of 
qtvalues. 

In the qmHMM forward and backward filter formu­

lation the transitional probabilities or 

for each HMM state (i.e., discrete cone 

tip, q,i) is set equal due to the fact that there is 
equal probability of moving from a current cone 
tip value to any other value between the range 
qtL to qtH. The likelihood PDF in the 
HMM filter outlined in Table 1 is calculated 
based upon an assumed Gaussian measurement 
error as follows: 

where σ2is the variance of the measurement noise. 
Baziw and Verbeek (2021a) outline the details of the 
qmHMM algorithm forward and backward filter 
formulation. 

2.2	 qmKF algorithm formulation 

The Kalman Filter (Gelb, 1974) is an optimal (least 
squares) recursive filter which is based on state-
space formulations of physical problems. Applica­
tion of this filter requires that the physical problem 
be modified by a set of first order differential equa­
tions which, with initial conditions, uniquely define 
the system behaviour. The filter utilizes knowledge 
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Table 2. KF governing equations.
 

Description Mathematical Representation
 

System equation 
Measurement equation 
State estimate 
extrapolation 
Error cov. extrapolation 
Measurement 
extrapolation 
Innovation 
Variance of innovation 
Kalman gain matrix 
State estimate update 
Error covariance update 

In (10) and (11) vk and uk are i.i.d Gaussian zero mean 
white noise processes with variances of Qk and Rk, respect­
ively (i.e.,vk � Nð0; RkÞ and uk � Nð0; QkÞ ). 

of system and measurement dynamics, assumed 
statistics of system noises and measurement errors 
and statistical information about the initial 
conditions. 

Table 2 outlines the KF governing equations. 
In Table 2 xk denotes the state to be estimated, 
Fk-1 denotes the state transition matrix which 
describes the system dynamics, uk-1 the process 
or system noise (model uncertainty), Gk-1 

describes the relationship between xk and uk-1, 
and Hk the relationship between the state and the 
available measurement (measured cone resistance 
qm). The KF can be applied to problems with 
linear time-varying systems and with non-station­
ary system and measurement statistics. The KF 
can be implemented for estimation, smoothing 
and prediction. 

The motivation of implementing the KF for the 
optimal removal of spurious cone bearing measure­
ments is that it can use any number, combination 
and sequence of external measurements. For 
example, it is envisioned measurements from the 
vane shear test undrained strength could be incorp­
orated within qmKF algorithm based upon empirical 
correlations. Furthermore, it also fits into our goal 
of implementation of data fusion techniques into 
CPTU and SCPT. 

Baziw and Verbeek (2021B) present a thorough out­
line of the qmKF algorithm. For completeness, the KF 
state and measurement equations are described below. 

2.3 System model 

To specify the qmKF systems equations in the stand­
ard KF state-space form, the following states need to 
be defined 

The discrete system equation (eq. (10)) is given as 

where Δ is the qm sampling rate and aw, and 
bw are the defining parameters of a first order 
Gauss-Markov (GM) process, The GM process 
describes the cone bearing acceleration and wk is 
white Gaussian noise with zero mean and unit 
variance. 

2.4 Measurement model 

Currently two synthesized measurements are incorp­
orated into the qmKF algorithm: 1) The best fit sev­
enth degree polynomial to the qm profile and 2) 
Output after applying a fourth order low pass fre­
quency filter to the qm profile. At a later date it is 
envisioned that additional measurements could be 
incorporated into the qmKF algorithm as previously 
described. 

A best  fit 7thdegree polynomial is made to the qm 

measurements every 1m to 1.4 m depth increment 
(allowed to be refined by investigator based upon data 
under analysis) so that the anomalous and spurious 
peaks and troughs are minimized. This polynomial is 
then fed into the  qmKF algorithm as a measurement. 
The order of the polynomial and depth increment were 
selected due to the averaging/blurring of the qm meas­
urements where it would be highly unlikely that there 
would be greater than 6 turnings1 in a 1m to 1.4m 
depth increment. This assumption was tested with 
extensive test bed simulation. 

A 4th order 250Hz to 300 Hz (allowed to be 
refined by investigator based upon data under ana­
lysis) Butterworth low pass frequency filter is 
applied to the qm measurements measurement so that 
the anomalous and spurious peaks and troughs are 
minimized even further. This 250Hz low passed fre­
quency filtered trace is then fed into the qmKF algo­
rithm as a measurement. 

1 The maximum number of turnings of a polynomial function is always one less than the degree 

118 



3 IMPLEMENTATION OF QMHMM AND QMKF 
ALGORITHMS 

3.1 Test bed simulation 

The performance of the qmHMM and qmKF algo­
rithms were evaluated by carrying out challenging 
test bed simulations. This section outlines one of 
those simulations. 

Figure 4 illustrates a simulation of thin bed layering 
(0.2m) where there is alternating true qv values of 
30MPa and 90MPa (light grey trace) interbedded 
within a 50 MPa background layer. As is shown in 
Figure 3 there is a resulting oscillation averaged/ 
smooth qm trace (black trace) with no sharp peaks or 
troughs. The output (black dotted trace) of the qmHMM 
algorithm is also illustrated in Figure 4. It shall be 
obvious that the qmHMM algorithm performed well as 
the derived qv 

/ values closely matched the originally 
specified qv values. 

Figure 4. Simulated true cone bearing measurements qv 

(light grey trace) and corresponding averaged/blurred qm 

(black trace) measurements. The qmHMM estimated qv
/ 

trace (black dotted trace) is superimposed upon the true 
cone bearing values. 

Figure 5 illustrates the simulated qm data of Figure 4 
(black) with additive noise to represent anomalous/ 
spurious qm data (red trace). The spurious data was 
simulated with Gauss-Markov process noise (Baziw 
and Verbeek, 2021b) with a variance of 60 and time 
constant of 0.1. The simulated Gauss-Markov noise 
then had a 250Hz high pass filter applied. 

Figure 6 illustrates the estimated qv (black dotted) 
trace from the qmHMM algorithm after processing 
the output of the qmKF algorithm (blue trace) of 
Figure 5. Superimposed on these traces is the true qv 

(light grey) trace of Figure 4. As is evident from 
Figure 6, the combination of the qmKF and qtHMM 

Figure 5. Simulated cone bearing averaged/blurred qm 

(black trace) of Figure 3, spurious qm trace (red trace) feed 
into the qmKF algorithm, and the qmKF algorithm output 
(blue trace). 

Figure 6. Simulated true cone bearing measurements qv 

(light grey trace) and corresponding averaged/blurred qm 

(black trace) measurements. The qmHMM estimated qv
/ 

trace (black dotted trace) is superimposed upon the true 
cone bearing values. 

algorithms results in obtaining impressive estimates 
of true qv values from challenging qm data sets. 

3.2 Real data examples 

After extensive test best analysis, the qmKF and 
qmHMM algorithms were evaluated implemented on 
real data sets. Figures 7a, 7b and 7c show qm profiles 
acquired by Perry Geotech Limited located at Tau­
ranga New Zealand. It is clear from the results pre­
sented in these figures that the effect of averaging/ 
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smoothing of the true qv values (eq. (1)) can results 
in a significant reduction in the recorded peaks of qv 

values, which may very well impact the design 
based on the CPT data. The qmKF and qmHMM algo­
rithms significantly minimize or undo this effect. 

Figure 7. Real data sets. qm (red trace), output from qmKF 
(blue trace) and qmHMM estimated qv

/ trace (black dotted 
trace). 
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4 CONCLUSIONS 

The qmKF and qmHMM algorithms outlined in this 
paper can effectively minimize the anomalous and 
spurious peaks and troughs to provide a more accur­
ate depth profile of the cone tip resistance. 

By applying these algorithms CPT will provide 
a more realistic soil behavior profile and also 
allow for more accurate identification of thin 
layers. In turn it will provide more accurate input 
data for any design process that uses the CPT 
results as direct input. 
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