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ABSTRACT:   

 

Cone penetration testing (CPT) is a popular and cost effective tool for geotechnical site 

characterization. CPT consists of pushing at a constant rate an electronic penetrometer into 

penetrable soils and recording cone bearing (qm), sleeve friction (fs) and dynamic pore pressure 

(u) with depth. The measured qm, fs and u values are utilized to estimate soil type and associated 

properties based predominantly on empirical correlations. The cone bearing measurements are 

highly susceptible to additive measurement noise for sandy, silty and gravelly soils.  This 

measurement noise results in high peaks due to interbedded gravels and stones and low peaks 

due to softer materials or local pore pressure build-up. To date there has been little progress in 

filtering this additive noise aside from ad hoc techniques, which include discarding qm 

measurements and smoothing/averaging qm measurements. This paper outlines a qm filtering 

technique which attempts to put structure into the estimation problem. In this case, the dynamics 

of the cone bearing measurements are modelled within a state-space mathematical formulation 

and a Kalman filter (KF) is then utilized to obtain optimal estimates of qm. The mathematical 

details of the qm KF algorithm are outlined in this paper along with the results from a challenging 

test bed simulation. 

 

1.  INTRODUCTION 

 

The Cone Penetration Test (CPT) is used to determine the 

subsurface stratigraphy, estimate geotechnical parameters of 

the soils present (Lunne et al., 1997; Robertson, 1990; ASTM 

D6067, 2017; Cai et. al, 2006), and estimate toe bearing 

capacity of piles (Eslami and Fellenius, 1995 and 1997). In 

CPT a steel cone on the end of a series of rods is pushed into 

the ground at a constant rate and data are recorded at a 

constant rate during penetration. The cone penetrometer has 

electronic sensors to measure penetration resistance at the tip 

(qm), friction in the shaft (friction sleeve) and dynamic pore-

water pressure during penetration. For cones with the filter 

element right behind the cone tip (i.e., the u2 position) it is 

standard practice to correct the recorded tip resistance for the 

impact of the pore pressure on the back of the cone tip. This 

corrected cone tip resistance is normally referred to as qt.  

  

Fig. 1. Schematic and terminology for 

cone penetrometer (Lunne et al., 

1997). 

 



Figure 1 illustrates a schematic and the 

associated terminology of a cone. 

Geotechnical engineers use the CPT 

measurements to characterize and 

quantify soil properties and ground water 

conditions so that the infrastructure (e.g., 

bridges, roads, buildings) construction 

requirements can be determine. 

     The cone tip resistance is a smoothing 

or averaging process (Baziw and Verbeek, 

2021) where cone tip values measured at a 

particular depth are affected by values 

above and below the depth of interest as 

illustrated in Fig. 2. The measured cone 

penetration tip resistance qm can then be 

described as 

 
𝑞𝑚(𝑑) = ∑ 𝑤𝑐(𝑗) × 𝑞𝑣(∆𝑞𝑡 + 𝑗)

60×(
𝐶𝑑
∆

)

𝑗=1

+  𝑣(𝑑)   

∆𝑞𝑡= (𝑑 − ∆𝑤𝑐),   ∆𝑤𝑐= 30 × (
𝐶𝑑

∆
) 

(1) 

where 

d the cone depth  

Cd the cone tip diameter  

Δ the qt sampling rate  

qm(d) the measured cone penetration tip resistance 

qv(d)  the true cone penetration tip resistance 

wc(d) the qv(d) averaging function 

v(d) additive noise, generally taken to be white with a Gaussian pdf 

In eq. (1) it assumed that wc averages qv over 60 cone diameters centered at the cone tip. 

Boulanger and DeJong (Boulanger and DeJong, 2018) outline how to calculate wc below (after 

correcting the equation for w1 (Baziw and Verbeek, 2021)): 

 

where: 

 𝑤𝑐 = 
𝑤1𝑤2 

∑𝑤1𝑤2
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Figure 3. Schematic of thin layer effect for a sand 

layer embedded in a clay layer (Boulanger and 

DeJong, 2018). 

 

Figure 2. Schematic of thin layer effect for a 

sand layer embedded in a clay layer (Boulanger 

and DeJong, 2018). 



Figure 4. Schematic of anomalous\ 

spurious cone bearing data (after 

Mortensen et al., 1991). 

 

Figure 5. Example of anomalous\spurious cone 

bearing data (after Robertson, 2015). 

 

Figure 6. Example of smoothing\averaging highly 

variable (5MPa and 15MPa) interbedded soils. 

Blue series is the true cone bearing qt and black 

series is smoothed qm cone bearing.  

𝑧′ the depth relative to the cone tip normalized by the cone diameter 

𝑧50
′  the normalized depth relative to the cone tip where w1 = 0.5 C1 

 

The cone penetration averaging function wcfor varying 𝑞𝑡, 𝑧′ 𝑞𝑡,   𝑧′=0⁄  ratios is illustrated in Fig. 3.  

The cone bearing measurements qm  are highly susceptible to anomalous peaks and troughs 

due to the relatively small diameter cone tip penetrating sandy, silty and gravelly soils.  The high 

peaks are due to interbedded gravels and stones and low peaks are due to softer materials or local 

pore pressure build-up. Lunne, Robertson and Powell (1997) give a detailed outline of these 

undesired peaks and troughs and refer to them as anomalous and spurious qm  data. Figure 4 is a 

schematic of the spurious cone bearing data. Figure 5 illustrates an example of a cone bearing 

profile which contains significant anomalous\spurious qm  data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spurious qm data closely resembles 

additive Gauss-Markov correlated white 

measurement noise which is extensively present 

in engineering measurement sensors such as 

marine navigation dead reckoning devices 

(Baziw, 1994 and 1996). This type of 

measurement noise is also found in seismic data 

acquisition systems (Baziw and Verbeek, 2012; 

Baziw and Weir-Jones, 2002). As previously 

outlined, the cone bearing measurement is an 

averaging operation where layers above and 

below the cone tip affect the measured tip 



resistance; therefore, sharp peaks and troughs should not be present and are considered 

measurement noise. For example, Fig. 6 illustrates a simulation of thin bed layering (0.2m) 

where there is alternating true qt values of 45MPa and 75MPa (blue trace). As is shown in Fig. 6 

there is a resulting oscillation averaged/smooth qm trace (black trace) with no sharp peaks or 

troughs.   

To date there has been minimal progress in removing the anomalous qm data aside from ad 

hoc techniques which include discarding qm measurements and smoothing/averaging (arithmetic 

and/or geometric) qm measurements over a specific depth interval. The software program 

Settle3D developed by Rocscience (2016) describes a qm filtering technique where qm data spikes 

are removed. In this technique the cone bearing profile is divided into n sections, where n = 

depth/(window size) (default window size is set to 0.25m). The qm mean (𝑞𝑚𝑚𝑒𝑎𝑛
) and standard 

deviation (𝜎𝑖) are then calculated for each section. A bandwidth is Wbi is calculated for each 

section as outlined below and if the measured qmvalue exceeds Wbi then the qm value is removed.                  

 
𝜎𝑎𝑖 = √(𝜎𝑖−1

2 + 𝜎𝑖
2) 

𝜎𝑏𝑖 = √(𝜎𝑖+1
2 + 𝜎𝑖

2) 

(3a) 

 

(3b) 

 

𝑊𝑏𝑖 = 𝑞𝑚𝑚𝑒𝑎𝑛
+ 𝐵𝑆 × 𝜎𝑎𝑖  𝑖𝑓  𝜎𝑎𝑖 < 𝜎𝑏𝑖 

 

𝑊𝑏𝑖 = 𝑞𝑚𝑚𝑒𝑎𝑛
+ 𝐵𝑆 × 𝜎𝑏𝑖  𝑖𝑓  𝜎𝑎𝑖 > 𝜎𝑏𝑖 

(3c) 

 

(3d) 

 BS is a filtering constant that has a default value of 1  

In this paper the qm measurement is mathematically modeled in a state-space formulation. The 

state-space formulation allows for the implementation of Bayesian recursive estimation 

techniques such as Kalman Filtering (KF). BRE techniques are very robust where multiple input 

measurements can be inputted into the estimation algorithm. The optimal qm estimation 

algorithm where spurious data has been removed or minimized is referred to as the qmKF 

algorithm.  

 

2. MATHEMATICAL BACKGROUND 

 

Bayesian Recursive Estimation 

Bayesian Recursive Estimation (BRE) is a filtering technique based on state-space, time-

domain formulations of physical problems (Arulampalam et al., 2002; Baziw, 2007). Application 

of this filter type requires that the dynamics of the system and measurement model, which relates 

the noisy measurements to the system state equations, be describable in a mathematical 

representation and probabilistic form that uniquely define the system behaviour.  The potentially 

nonlinear discrete stochastic equation describing the system dynamics is defined as follows: 

 𝑥𝑘  = 𝑓𝑘−1(𝑥𝑘−1, 𝑢𝑘−1)  ↔  𝑝(𝑥𝑘|𝑥𝑘−1) (4) 

In eq. (4), the vector fk is a function of the state vector xk and the process or system noise uk.  It is 

assumed that eq. (4) describes a Markov process of order one. The sampled potentially nonlinear 

measurement equation is given as 

 𝑧𝑘 = ℎ𝑘(𝑥𝑘 , 𝑣𝑘)  ↔  𝑝(𝑧𝑘|𝑥𝑘) (5) 



In eq. (5), hk depends upon the index k, the 

state xk, and the measurement noise vk at each 

sampling time. The probabilistic state-space 

formulation described by eq. (5) and the 

requirement for updating the state vector estimate 

based upon the newly available measurements 

described by eq. (5) are ideally suited for the 

Bayesian approach to derive the optimal 

estimation. In this approach it is attempted to 

construct the posterior estimate ofthe state given 

all available measurements. In general terms, it is 

desired to obtainestimates of the discretized 

system equation states xk based on all available 

measurements up to timek (denoted as z1:k) by 

constructing the posterior p(xk| z1:k.).  The 

posterior Probability Density Function (PDF) then 

allows the calculation of the conditional mean 

estimate of the state (E[xk | z1:k]).  

BRE is a two step process consisting of 

prediction and update.  In the prediction step the 

system equation defined by eq. (6) is used to 

obtain the prior PDF of the state at time kusing the 

Chapman-Kolmogorov equation, which is given 

as 

 𝑝(𝑥𝑘|𝑧1:𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1 |𝑧1:𝑘−1)𝑑𝑥𝑘−1 (6) 

The update step then computes the posterior PDF from the predicted PDF and the newly 

available measurement as follows: 

 𝑝(𝑥𝑘|𝑧1:𝑘) =
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 (7) 

The recurrence eqs. (6) and (7) form the basis for the optimal Bayesian solution. The BRE of the 

posterior density can generate an exact solution when the state-space equations fit into a Kalman 

Filterformulation or a Hidden Markov Model.  

 

Kalman Filter 

 

The Kalman Filter (KF) equations (Table 1) can be implemented as an optimal solution to the 

BRE when the following conditions are met: 

• uk and vk are zero mean independent Gaussian white noise processes 

• fk is a linear function of the state vector 

• process noise, hk is a linear function of the state vector andmeasurement noise 

• the initial estimate of x0 has a Gaussian distribution. 

 

TABLE 1 

KF Governing Equations  

DESCRIPTION Mathematical Representation 
Eq

. 

System equation 𝑥𝑘  = 𝐹k-1𝑥k-1  + 𝐺k-1𝑢k-1
 8 

Measurement equation 𝑧𝑘  = 𝐻𝑘 𝑥𝑘 + 𝑣𝑘  9 

State estimate extrapolation �̂�𝑘|𝑘−1  = 𝐹k-1�̂�𝑘−1|𝑘−1 10 

Error covariance 

extrapolation 
 

𝑃𝑘|𝑘−1  = 𝐹k-1𝑃𝑘−1|𝑘−1𝐹k-1

𝑇
+ 

𝐺k-1𝑄𝑘−1|𝑘−1𝐺k-1

𝑇
 

11 

Measurement extrapolation  �̂�𝑘  = 𝐻k-1�̂�𝑘|𝑘−1 12 

Innovation 𝛥𝑘  = 𝑧𝑘 − �̂�𝑘  13 

Variance of innovation 𝑆𝑘  = 𝐻𝑘 𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘  14 

Kalman gain matrix 𝐾𝑘  = 𝑃𝑘|𝑘−1𝐻𝑘(𝑆𝑘 )−1 15 

State estimate update �̂�𝑘|𝑘  = �̂�𝑘|𝑘−1 + 𝐾𝑘 𝛥𝑘  16 

Error covariance update 𝑃𝑘\𝑘  = [𝐼 − 𝐾𝑘 𝐻𝑘 ]𝑃𝑘|𝑘−1 17 

   

In (8) and (9) vk and uk are i.i.d Gaussian zero mean white noise 

processes with variances of Qk and Rk, respectively 

(i.e.,𝑣𝑘 ~ 𝑁(0, 𝑅𝑘)  and 𝑢𝑘 ~ 𝑁(0, 𝑄𝑘) ). 

 

 



Figure 7. Block diagram of system, measurement, and Kalman Filter (Baziw and 

Weir-Jones, 2002). 

In Table 1 xk denotes the state to be estimated, Fk-1denotes the state transition matrix which 

describes the system dynamics, uk-1 the process or system noise (model uncertainty), Gk-1 

describes the relationship between xk and uk-1, and Hk  the relationship between the state and the 

available measurement (measured cone resistance qm). The KF can be applied to problems with 

linear time-varying systems and with non-stationary system and measurement statistics. 

Problems with nonlinearities are handled by linearizing the system and measurement equations. 

The Kalman Filter is readily applied to estimation, smoothing and prediction. 

Figure 7 illustrates the essential relation between the system, the measurements and the 

Kalman Filter. Figure 7 indicates the scope of information the KF takes into account. As can be 

seen, the statistics  of the measurement and state errors are essential components of the filter. The 

a priori information  provides for optimal use of any number, combination and sequence of 

external measurements. 

 

 

 

 

 

 

 

 

 

 

The computational sequence for the discrete KF is outlined as follows: 

 

I. at time index k = 0, specify initial conditionsx0 and P0, and compute F0 and 𝐺0 𝑄0 𝐺0

𝑇
 

 

II. at time index k=1, compute �̂�1|0, 𝑃1|0 H1, R1, and the gain matrix K1 

III. using the measurement z1 at time index k=1, the best estimate of the state at k=1 is given 

by 

 

�̂�1|1  = �̂�1|0 + 𝐾1 𝛥1  

 

𝛥1  = 𝑧1 − �̂�1  

 

�̂�1  = 𝐻1 �̂�1|0 

 

IV. Update the error covariance matrix 𝑃1\1 

At time index k=2, a new measurementz2 is obtained and the computational cycle is repeated. 

 

Gauss-Markov Model 

In the subsequently outlined qmKF algorithm the state-space mathematical model for the cone 

bearing measurements qm is described kinematically via the position, velocity and acceleration of 



the averaged/smoothed cone bearing qm measurement. This is similar to marine navigation 

(Baziw, 1994 and 1996) where multiple measurements are inputted into a kinematics KF and 

optimal estimates of the vessel’s real time position are made based upon the dynamics of the 

vessel and the available measurements. In the qmKF algorithm the measured cone bearing 

acceleration is modelled as a Gauss-Markov process. The Gauss-Markov (Gelb, 1974; Lear, 

1985) process has a relatively simple mathematical description.   

As in the case of all stationary Gaussian processes, specification of the process 

autocorrelation completely defines the process.  The variance, σ2, and time constant, Tc (ie., β = 

1/Tc), define the first-order Gauss-Markov process.  The discreet mathematical equation for a 

Gauss-Markov process is given as 

 
𝑛𝑘+1  =  𝑎𝑤𝑛𝑘 + 𝑏𝑤𝑤𝑘 

𝑎𝑤 = 𝑒−𝛽𝛥𝑎𝑛𝑑 𝑏𝑤 = 𝜎√1 − 𝑒−2𝛽𝛥 
(18) 

In eq. (18), Δ is the sampling rate and wk is a zero-mean, timewise-uncorrelated, unit-variance 

sequence with a Gaussian probability distribution function. nk is therefore a zero-mean, 

exponentially-correlated random variable whose standard deviation is σ.  The constant aw can 

have a range of values from -1 to +1.  For a stable variable, aw is restricted to values between 0 

and +1.  For aw → 0, nk changes rapidly and tends to be uncorrelated from sample to sample.  For 

aw → 1, the behavior of nk becomes more sluggish and it tends to change little from sample to 

sample.The time constant term (Tc where𝑎𝑤  =  𝑒−𝛥 𝑇𝑐⁄ ) of the qm acceleration model is a very 

robust parameter within the qmKF algorithm.  Preferably the qm acceleration model results in a 

smooth trajectory of the cone bearing while at the same time allowing for sufficient 

maneuverability. A value of  aw = 0.999 was found to work well for modeling a variety of qm 

profiles. The estimate of the variance of the acceleration is provided by a polynomial best fit as is 

subsequently described.  

  



3 qmKF ALGORITHM OUTLINE 

 

3.1 State-Space Formulation and Measurement Model 

 

System Model  

 

To specify the systems equations in the standard KF state-space form, the following states 

need to be defined 

 [

𝑥1

𝑥2

𝑥3

] ≡ [

𝑞𝑚 𝑐𝑜𝑛𝑒 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑞𝑚 𝑐𝑜𝑛𝑒 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑞𝑚 𝑐𝑜𝑛𝑒 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
] (19) 

 

The discrete system equation (eq. (8)) is given as  

 [

𝑥1𝑘+1

𝑥2𝑘+1

𝑥3𝑘+1

] = [
1 ∆ ∆2 2⁄
0 1 ∆
0 0 𝑎𝑤

] [

𝑥1𝑘

𝑥2𝑘

𝑥3𝑘

] + [
0
0
𝑏𝑤

]𝑤𝑘 (20) 

In eq. (19) where Δ is the sampling rate and aw, bw and wk are defined in eq. (18).  

 

The discrete covariance structure (eq. 11) 

 𝐺k-1𝑄𝑘−1|𝑘−1𝐺k-1

𝑇
= [

0 0 0
0 0 0
0 0 𝑏𝑤

2
] (21) 

 

Measurement Model 

 

Currently two synthesized measurements are incorporated into the qmKF algorithm: 1) The 

best fit seventh degree polynomial to the qm profile and 2) Output after applying an fourth order 

low pass frequency filter to the qm profile. At a later date it is envisioned that additional 

measurements could be incorporated into the qmKF algorithm such as the output from the vane 

shear strength. In this case the estimated vane shear test undrained strength estimate is used to 

calculate qm measurements from established empirical correlations. 

 [
𝑧1

𝑧2
] ≡ [

𝑠𝑒𝑣𝑒𝑛𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑝𝑜𝑙𝑦𝑛𝑖𝑎𝑙 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡
𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑓𝑡𝑒𝑟 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑙𝑜𝑤 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟

] (22) 

The linear measurement matrix, H, is given by the following equation 

 𝐻𝑘 = [
1 0
1 0

] (23) 

 

7thDegree Polynomial Measurement Model 

 

A best fit 7th degree polynomial is made to the qm measurements every 1.4 m depth increment 

so that the “spurious” noise is minimized. This polynomial is then fed into the qmKF algorithm as 

a measurement. The order of the polynomial and depth increment were selected due to the 

averaging/blurring of the qm measurements where it would be highly unlikely that there would be 



greater than 6 turnings1 in a 1.4m depth increment. This assumption was tested with extensive 

test bed simulation. The estimation of the series of polynomials over the complete qmprofile is 

done utilizing a KF.  

In terms of kinematics, the position (𝑧𝑘), velocity (𝑧�̇�), and acceleration (𝑧�̈�) of a 7th degree 

polynomial is given as  

 

 

𝑧𝑘 = 𝑎0 + 𝑎1𝑑 + 𝑎2𝑑
2 + 𝑎3𝑑

3 + 𝑎4𝑑
4 + 𝑎5𝑑

5 + 𝑎6𝑑
6 + 𝑎7𝑑

7 

 

𝑧�̇� = 𝑎1 + 2𝑎2𝑑 +  3𝑎3𝑑
2 + 4𝑎4𝑑

3 + 5𝑎5𝑑
4 + 6𝑎6𝑑

5 + 7𝑎7𝑑
6 

 

𝑧�̈� = 2𝑎2 +  6𝑎3𝑑 + 12𝑎4𝑑
2 + 20𝑎5𝑑

3 + 30𝑎6𝑑
4 + 42𝑎7𝑑

5 

 

where 𝑑 = 𝑘∆, ∆ is the sampling rate 
 

(24a) 

 

(24b) 

 

(24c) 

 

 

 

The following states need to be defined for estimating the 7th degree polynomial coefficients 

with a KF 

 

[
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8]
 
 
 
 
 
 
 

≡

[
 
 
 
 
 
 
 
𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5 

𝑎6

𝑎7 ]
 
 
 
 
 
 
 

 (25) 

The discrete system equation (eq. (8)) is given as  

 

[
 
 
 
 
 
 
 
𝑥1𝑘+1

𝑥2𝑘+1

𝑥3𝑘+1

𝑥4𝑘+1

𝑥5𝑘+1

𝑥6𝑘+1

𝑥7𝑘+1

𝑥8𝑘+1]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥1𝑘

𝑥2𝑘

𝑥3𝑘

𝑥4𝑘

𝑥5𝑘

𝑥6𝑘

𝑥7𝑘

𝑥8𝑘]
 
 
 
 
 
 
 

 (26) 

The linear measurement matrix, H, is given by the following equation 

 𝐻𝑘 = [1 𝑑 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7] (27) 

As previously outlined, the best fit 7th degree polynomial is made to the qm measurements 

every 1.4m depth increment (i.e., 𝑁 = (1.4 ∆⁄ ), where N is the total number of points to be 

processed at each depth increment). The value of the variance of the polynomial acceleration at 

each depth increment is calculated using eq. (24c). The maximum value is then used within eq. 

(18). For continuity in the polynomial estimated trace, the last estimated value of the polynomial 

“position” (𝑧𝑁) is set to coefficient 𝑎0 and the last estimated value of the polynomial “velocity” 

 
1 The maximum number of turnings of a polynomial function is always one less than the degree 



(𝑧�̇�), is set to coefficient 𝑎1in the subsequent depth increment 7th degree polynomial KF 

estimation. 

 

4th Order Low Pass Filter  

 

A 4th order 250Hz Butterworth (low pass frequency filter is applied to the qm measurements 

measurement so that the “spurious” noise is minimized. This 250Hz low passed frequency 

filtered trace is then fed into the qmKF algorithm as a measurement. The Butterworth filter 

(Kanasewich, 1981) is a common form of a low-pass filter, and it can be defined by 

 |𝐺(𝜔)|2 = 1 {1 + (𝜔 𝜔0⁄ )2𝑁}⁄  
(28) 

 

where 𝜔0 is the “cutoff” frequency (250Hz in this case) and N determines the sharpness of the 

cutoff. 

 

The advantages associated with the Butterworth filters are as follows: 

 

• Their transfer functions are smooth and maximally flat both inside and outside the 

passband. 

• The squared filter (i.e., the input is filtered twice so that the amplitude responses is 

|𝐺(𝜔)|2) produced zero phase shift and its power is down 3dB (factor of ½) at the cutoff 

frequency2.  

 

The 250Hz cutoff frequency was selected due to the averaging/blurring of the qm measurements 

where it would be highly unlikely that there 

would be frequencies greater than 250Hz. 

This assumption was tested with extensive 

test bed simulation.  

 

qmKFTest Bed Examples: 

 

The performance of the qmKF  algorithm 

was evaluated by carrying out challenging 

test bed simulations. This section outlines 

two of these challenging test bed simulations.  

 

Table 2 and Figure 8 outline and illustrate, 

respectively, the simulated cone bearing 

profile where the background qt values 

linearly increase from 10 MPa to 12 MPa to a 

depth of 20 m. A 1cm sampling interval was 

applied in the simulation.   

 
2
The cutoff frequency determines the half-power point of 

the filter. 

Figure 8. Simulated true cone bearing 

measurements qt (red trace) and 

corresponding averaged/blurred qm (black 

trace) measurements. 

 



Figure 10. The traces illustrated in Fig. 9 but in this case industry standard four point 

smoothing\averaging was applied to the spurious qm trace (grey trace).  

 

 

Figure 9 illustrates the simulated qm data of Figure 8 

(black) with additive noise to represent 

anomalous/spurious qm data (grey trace). The Gauss-

Markov simulated noise has a variance of 9 and a time 

constant of 0.3. In addition, the Gauss-Markov noise had a 

high pass frequency of 250 Hz applied so that realistic 

spurious data was generated.  The red trace is the qmKF 

algorithm estimated qm profile after processing the 

spurious qm data (grey trace). Figure 10 shows the traces 

illustrated in Fig. 9 but in this case an industry standard 

four point smoother was applied to the spurious qm trace 

(grey trace). 

Figure 11 illustrates the simulated qm data of Figure 8 

(black) with additive noise to represent 

anomalous/spurious qm data (grey trace). The Gauss-

Markov simulated noise has a variance of 50 and a time constant of 0.7. The red trace is the 

qmKF algorithm estimated qm profile after processing the spurious qm data (grey trace). Figure 12 

shows the traces illustrated in Fig. 11 but in this case an industry standard four point smoother 

was applied to the spurious qm trace (grey trace). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth 1 Depth 2 qt [MPa] 

   

1.0 1.8 5 

1.8 2.2 14 

2.2 2.7 10 

3.5 3.9 5 

4.2 4.9 18 

5.2 6.0 4 

6.2 6.9 19 

8.0 8.4 14 

10.5 10.7 25 

12.2 15.5 5 

13.0 13.3 10 

Table 2. Simulated qt values 

Figure 9. Simulated cone bearing averaged/blurred qm (black trace) of Fig. 8, spurious qm 

trace (grey traceσ2 = 9 and Tc = 0.3) feed into the qmKF algorithm, and the qmKF algorithm 

output (red trace).  

 



Figure 12. The traces illustrated in Fig. 11 but in this case industry standard four point 

smoothing\averaging was applied to the spurious qm trace (grey trace).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second test bed simulation addresses the issue first described in Figure 6: a simulation of 

thin bed layering (0.2m) where there is alternating true qt values of 45 MPa and 75 MPa (blue 

trace). As was shown in Fig. 6 there is a resulting oscillation averaged/smooth qm trace (black 

trace) with no sharp peaks or troughs.  Figure 13 illustrates the simulated qm data of Fig. 6 

(black) with additive noise (σ2 = 70 and Tc = 0.2) to represent anomalous/spurious qm data (grey 

trace). The red trace is the qmKF algorithm estimated qm profile after processing the spurious qm 

data (grey trace). Figure 14 shows the traces illustrated in Fig. 13 but in this case an industry 

standard four point smoother was applied to the spurious qm trace (grey trace). Figure 15 

illustrates the simulated qm data of Fig. 6 (black) with additive noise (σ2 = 300 and Tc = 0.3) to 

represent anomalous\spurious qm data (grey trace). The red trace is the qmKF algorithm estimated 

qm profile after processing the spurious qm data (grey trace). Figure 16 shows the traces illustrated 

in Fig. 15 but in this case an industry standard four point smoother was applied to the spurious 

qm trace (grey trace). 

Figure 11. Simulated cone bearing averaged/blurred qm (black trace) of Fig. 8, spurious 

qm trace (grey trace σ2 = 50 and Tc = 0.7) feed into the qmKF algorithm, and the qmKF 

algorithm output (red trace).  

 



Figure 14. The traces illustrated in Fig. 13 but in this case industry standard four point 

smoothing\averaging was applied to the spurious qm trace (grey trace).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 15. Simulated cone bearing averaged/blurred qm (black trace) of Fig. 6, spurious 

qm trace (grey trace σ2 = 300 and Tc = 0.3) feed into the qmKF algorithm, and the qmKF 

algorithm output (red trace).  

 

Figure 13. Simulated cone bearing averaged/blurred qm (black trace) of Fig. 6, spurious 

qm trace (grey trace σ2 = 70 and Tc = 0.2) feed into the qmKF algorithm, and the qmKF 

algorithm output (red trace).  

 



Figure 16. The traces illustrated in Fig. 15 but in this case industry standard four point 

smoothing\averaging was applied to the spurious qm trace (grey trace).  

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

 

In Cone penetration testing (CPT) the cone bearing measurements qm are highly susceptible to 

anomalous peaks and troughs due to the relatively small diameter cone tip penetrating sandy, 

silty and gravelly soils.  The high peaks are due to interbedded gravels and stones and low peaks 

are due to softer materials or local pore pressure build-up. The cone bearing measurement is an 

averaging operation where layers above and below the cone tip affect the measured tip 

resistance; therefore, sharp peaks and troughs should not be present and are considered as 

measurement noise. To date there has been minimal progress in removing the anomalous qm data 

aside from ad hoc techniques which include discarding qm measurements and 

smoothing/averaging qm measurements over a specific depth interval. This paper has outlined a 

Kalman Filter (KF) algorithm (qmKF) which optimally obtains estimates of qm with the spurious 

data removed or minimized. The implementation and performance of the qmKF algorithm was 

demonstrated by considering  challenging test bed examples. The authors will carry out further 

test bed simulations and subsequently apply the qmKF algorithm on real data sets.   
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