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ABSTRACT:   

 

The Downhole Seismic Test (DST) is an extensively utilized geotechnical tool  for site 

characterization. DST provides low strain (<10-5) in-situ interval shear and compression wave 

velocity estimates.  These velocities are determined by obtaining relative arrival times of source 

waves as they travel through the stratigraphy and are recorded by one or more vertically offset 

seismic sensors. The DST arrival times have associated measurements errors and resolution 

limitations which become more pronounced as the depth interval of analysis is reduced. The errors 

in arrival time measurements result in extensive fluctuations in the estimated interval velocities 

with numerous outliers. BCE has developed a new DST analysis technique, the so-called 

DSTPolyKF algorithm, where analytically modelling of the DST arrival time data sets is 

accomplished by fitting high order polynomials. The main advantages of this new technique are 

five-fold. 1) Ability to utilize all arrival time estimates irrespective of measurement errors. 2) 

Ability to process small depth interval (≤ 0.5m) arrival time data sets. 3) Analytical polynomial 

“best fit” function allows for user specification of desired depth intervals for data interpolation. 4) 

Facilitates sophisticated data fusion for significantly more accurate DST interval velocity 

estimation. 5) Polynomial regression accuracy parameters quantify how well the “best fit” 

polynomial fits the acquired arrival time data sets. This paper outlines the mathematically details 

of the best fit polynomial where a Kalman filter formulation is implemented. The performance of 

the DSTPolyKF algorithm is demonstrated by processing real DST data sets.  

 

1.  INTRODUCTION 

 

Downhole Seismic Testing (DST) is utilized 

extensively in both onshore and offshore 

geotechnical site investigations for the estimation 

of in-situ shear and compression wave velocities 

(ASTM, 2017).  The shear and compression 

wave velocities allow for the calculation of 

various important geotechnical parameters such 

as the shear modulus, Poisson’s ratio and 

Young’s modulus.  Figure 1 shows a schematic 

of the typical DST configuration: a seismic 

source is used to generate a seismic wave train at 

the surface.  Downhole seismic receivers are used 

to record the seismic wave train at predefined 

depth increments. When triggered by the 

seismic source a data recording system 

Figure 1. Schematic of the typical DST 

configuration. 

 



records the response of  the downhole receiver(s).  Interval velocity estimates are obtained by 

measuring the relative and true travel times between the source waves recorded at subsequently 

greater depths. 

In DST source wave trajectories adhere to Fermat’s principle, which means that the raypath 

travels along the trajectory that minimizes the travel time between points, and that means that 

every depth the raypath will 

be different as shown in 

Fig.2. In Fig. 2, Vi and αi 

denote the soil interval 

velocity and absorption, 

respectively. Angle θ1 is the 

angle of incidence and θ2 is 

called the angle of refraction. 

Equation (1) defines the 

relation between ,1 2 , V1 

and V2.   

Equation 1 is referred to 

as Snell’s Law (Aki and 

Richards (2002)) and is 

derived from Fermat’s 

Principle, which states that a 

wave will take that raypath 

for which the travel time is 

stationary with respect to 

minor variations of the 

raypath (Shearer, 1999). 

Baziw and Verbeek  (Baziw,  2002; Baziw and Verbeek, 2012, 2019, 2021a) have developed a 

methodology, the so called Forward Modelling Downhill Simplex Method (FMDSM), which 

implements Fermat’s Principle when processing DST data sets.  

There are several factors which can lead to DST arrival time measurement errors. These 

measurement errors are predominantly due to poor data quality, low resolution of the seismic 

sensor and corresponding small DST depth increments, and the type of data trigger utilized. Poor 

quality DST seismic data recordings general results from “dirty” sources (e.g., poor coupling 

between seismic hammer plate and soil), poor sensor-stratigraphy coupling, complicated 

stratigraphy resulting in source wave reflections, refraction etc., and insufficient energy output of 

the seismic source.  

The two types of seismic sensors utilized in DST for acquiring seismic source waves are 

geophones and accelerometers. On rare occasions (e.g., saturated borehole) hydrophones are 

utilized. Ideally the seismic sensor should provide signals which are unaffected by the sensors 

inherent characteristics and as closely as possible reflect the true soil response to the seismic source 

wave traveling through it and ambient measurement noise (i.e., input = output).  In terms of 

frequency response of the receiver, its output should be constant for all input frequencies. In 

addition, the phase of the input frequency should be unaffected so that the wave’s shape does not 

change (Baziw et al., 2000).  In general terms it is desirable to have a seismic sensor with a fast 

response time and a small settling time. high precision piezoelectric accelerometers (operational 

amplifier integrated into sensor) are preferable due to their low noise, fast response times, and high 

Sin θ1 / V1 = Sin θ2 / V2 = p 

 

quantity p is called the raypath parameter.   

(1) 

Figure 2. Schematic of thin layer effect for a sand layer 

embedded in a clay layer (Baziw and Verbeek, 2021). 



bandwidths compared to geophones.  High precision accelerometers typically have desirable rise 

and decay times (in the order of 5 μs), and these characteristics ensure recorded traces with minimal 

or no sensor distortion (input = output). For these reasons, DTS investigations with relative  small 

depth increments should utilize high precision accelerometers.  

In DST there are two types of trigger mechanisms: 1) contact triggers whereby the system is 

triggered when contact is made between source and receiver (e.g., when the source hammer strikes 

the plate), and 2) sensor triggers when the signal of a transducer (e.g. an accelerometer or 

geophone) is used to trigger the system. contact triggers are significantly more accurate than 

Sensor triggers. This is due to the fact that contact triggers  have a very low noise environment 

and very fast rise time when contact is made. The contact trigger ensures a very accurate reference 

trigger time.  

To address the outlined DST measurement errors, BCE has developed a new DST analysis 

technique, the so-called DSTPolyKF algorithm, which “best fits” a high order polynomial to  

arrival time data sets. This technique implements a Kalman filter formulation so that arrival time 

data sets can be processed sequentially with measurement errors assigned for each estimated 

arrival time (allowing for variable weight on arrival time estimates); Furthermore, the KF is an 

ideal mathematical tool for data fusion. In this case numerous and relevant data sets are utilized 

for optimal estimation of desired parameters.  

 

2. MATHEMATICAL BACKGROUND AND DSTPolyKF ALGORITHM FORMULATION  

 

2.1 Kalman Filter 

The Kalman Filter (KF) is a Bayesian Recursive Estimation (BRE) filtering technique based on 

state-space, time-domain formulations of physical problems (Gelb, 1974; Arulampalam et al., 

2002; Baziw, 2007; Baziw and Verbeek, 

2021b). Application of this filter type 

requires that the dynamics of the system 

and measurement model, which relates 

the noisy measurements to the system 

state equations, be describable in a 

mathematical representation and 

probabilistic form that uniquely define the 

system behaviour.  Baziw and Verbeek 

(2021b) give a detailed outline of the KF 

governing equations and the 

implementation of these equations. The 

Kalman Filter (KF) equations are outlined 

in Table 1. 

In Table 1 xk denotes the state to be 

estimated, Fk-1denotes the state transition 

matrix which describes the system 

dynamics, uk-1 the process or system noise 

(model uncertainty), Gk-1 describes the 

relationship between xk and uk-1, and Hk  

the relationship between the state and the 

available measurement (source wave 

Table 1 

KF Governing Equations  

DESCRIPTION Mathematical Representation 
Eq

. 

System equation 𝑥𝑘  = 𝐹k-1𝑥k-1  + 𝐺k-1𝑢k-1
 2 

Measurement equation 𝑧𝑘  = 𝐻𝑘 𝑥𝑘 + 𝑣𝑘  3 

State estimate extrapolation �̂�𝑘|𝑘−1  = 𝐹k-1�̂�𝑘−1|𝑘−1 4 

Error covariance 

extrapolation 
 

𝑃𝑘|𝑘−1  = 𝐹k-1𝑃𝑘−1|𝑘−1𝐹k-1

𝑇
+ 

𝐺k-1𝑄𝑘−1|𝑘−1𝐺k-1

𝑇
 

5 

Measurement extrapolation  �̂�𝑘  = 𝐻k-1�̂�𝑘|𝑘−1 6 

Innovation 𝛥𝑘  = 𝑧𝑘 − �̂�𝑘  7 

Variance of innovation 𝑆𝑘  = 𝐻𝑘 𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘  8 

Kalman gain matrix 𝐾𝑘  = 𝑃𝑘|𝑘−1𝐻𝑘(𝑆𝑘 )−1 9 

State estimate update �̂�𝑘|𝑘  = �̂�𝑘|𝑘−1 + 𝐾𝑘 𝛥𝑘  10 

Error covariance update 𝑃𝑘\𝑘  = [𝐼 − 𝐾𝑘 𝐻𝑘 ]𝑃𝑘|𝑘−1 11 

   

In (2) and (3) vk and uk are i.i.d Gaussian zero mean white noise 

processes with variances of Qk and Rk, respectively 

(i.e.,𝑣𝑘 ~ 𝑁(0, 𝑅𝑘)  and 𝑢𝑘 ~ 𝑁(0, 𝑄𝑘) ). 

 

 



arrival time). The KF can be applied to problems with linear time-varying systems and with non-

stationary system and measurement statistics. Problems with nonlinearities are handled by 

linearizing the system and measurement equations. The Kalman Filter is readily applied to 

estimation, smoothing and prediction. 

 

2.2 DSTPolyKF Algorithm Formulation  

2.2.1 Polynomial Regression and the Assessment of its Accuracy 

 

Polynomial regression is a commonly utilized technique for analytically modelling data sets 

with measurement errors. The polynomial regression equation is given as  

 

 

 

𝑧𝑘 = �̂�𝑘 + 𝑣𝑘 =  𝑎0 + 𝑎1𝑑 + 𝑎2𝑑
2 + 𝑎3𝑑

3 + 𝑎4𝑑
4 + ⋯+ 𝑎𝑛𝑑𝑛

+ 𝑣𝑘 

 

where �̂�𝑘 is the polynomial regression estimator, n is the degree of the 

polynomial, vk is the measurement error and 𝑑 = 𝑘∆, ∆ is the sampling 

rate. 
 

(12) 

 

 

 

 

Ostertagová, (2012) outlines four parameters which can be utilized to evaluate the accuracy of the 

polynomial regression best fit. These four parameters are mean squared error (MSE) of the 

polynomial estimator, Mean Absolute Percentage Error (MAPE), coefficient of determination 

(R2), and adjusted coefficient of determination (R*2). Table 2 outlines the four polynomial 

regression accuracy parameters by their mathematical representations and important 

characteristics.  In the DSTPolyKF algorithm polynomial regressions of order 2 to 7 are derived 

for the estimated DST source wave arrival times. The polynomial aggression order1 which results 

in the “best” accuracy parameter values as defined in Table 2 and lowest polynomial order is 

utilized. This approach addresses the well-known bias-variance tradeoff of polynomial regression 

(Emmert-Streib and Dehmer, 2019). 

 

2.2.2 DSTPolyKF algorithm state-space formulation and measurement model 

 

n th Degree Polynomial Measurement Model 

 

The following states need to be defined for estimating the nth degree polynomial coefficients 

outlined in eq. (12) with a KF 

 

 
1 The maximum number of turnings of a polynomial function is always one less than the degree 
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Parameter and Mathematical 

Equation 

 Notes 

 

𝑀𝑆𝐸 =  
𝑆𝑆𝑅

𝑑𝑓𝐸
=

∑ (𝑧𝑘 − �̂�𝑘)
2𝑚

𝑘=1

𝑚 − (𝑛 + 1)
 

 

 

SSR is the Sum of Squares 

Residual.  The SSR has 𝜒2 

distribution with 𝑑𝑓𝐸 = 𝑚 − (𝑛 +
1) degrees of freedom. 

 

(13) 

 

MSE is an unbiased estimator of the variance of the 

measurement error. Parameter RMSE is the Root 

Mean Square Error where RMSE = √MSE. RMSE 

is a biased estimator of the standard deviation of the 

measurement error.  

 

 

𝑀𝐴𝑃𝐸 = 
100

𝑚
∑ |

𝑧𝑘 − �̂�𝑘

𝑧𝑘
|

𝑚

𝑘=1

 

 

 

 

 

 

(14) 

MAPE measures relative performance or prediction 

accuracy of a forecasting method in statistics. 

MAPE values and the associated prediction 

accuracy are outline in below. 
 

MAPE Value Prediction Accuracy 

MAPE<10% excellent 

10% ≤ MAPE ≤ 20% good 

20% < MAPE ≤ 50% acceptable 

50% < MAPE inaccurate 

Table 1. Polynomial regression best fit accuracy parameters 



 

𝑅2 =  1 − 
𝑆𝑆𝑅

𝑇𝑆𝑆
= 1

−
∑ (𝑧𝑘 − �̂�𝑘)

2𝑚
𝑘=1

∑ (𝑧𝑘 − 𝑧̅)2𝑚
𝑘=1

 

 

𝑧̅ is the arithmetic mean. TSS is the 

Total Sum of Squares. 

 

 

 

(15) 
𝑅2 measures how the percentage of variation in 

variable zk can be explained by the explanatory 

variable d in eq. (12). In general terms, 𝑅2 quantifies 

what percentage of the measured zk values reside on 

the best fit polynomial �̂�𝑘. 𝑅2 is similar to the 

correlation coefficient. The correlation coefficient 

quantifies how strong of a linear relationship there 

is between two variables.  𝑅2  values and the 

associated prediction accuracy are outline below. 
 

𝑹𝟐  value Prediction Accuracy 

0.9 ≤ 𝑅2   excellent 

0.8 ≤  𝑅2< 0.9 good 

0.6 ≤ 𝑅2 < 0.8 acceptable 

𝑅2 < 0.6 inaccurate 

 

𝑅∗2 = 𝑅2 − 
(1 − 𝑅2)𝑛

𝑚 − (𝑛 + 1)
 

 

(16) 
𝑅∗2 is the adjusted value of the coefficient of 

determination in which the order of the polynomial 

is taken into account. Prediction accuracy is poor if 

𝑅∗2 is significantly lower than 𝑅2. 

 

 

 

 

 

The discrete system equation (eq. (2)) is given as  

 

 

[
 
 
 
 
 
 
 

𝑥1𝑘+1

𝑥2𝑘+1

𝑥3𝑘+1

𝑥4𝑘+1

⋮
𝑥(𝑛−1)𝑘+1

𝑥(𝑛)𝑘+1

𝑥(𝑛+1)𝑘+1]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 ⋱ 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑥1𝑘

𝑥2𝑘

𝑥3𝑘

𝑥4𝑘

⋮
𝑥(𝑛−1)𝑘

𝑥𝑛𝑘

𝑥(𝑛+1)𝑘]
 
 
 
 
 
 
 

 (18) 

The linear measurement matrix, H, is given by the following equation 

 𝐻𝑘 = [1 𝑑 𝑑2 𝑑3 ⋯ 𝑑𝑛−3 𝑑𝑛−2 𝑑𝑛−1] (19) 

 

3. DSTPolyKF ALGORITHM PERFORMANCE ASSESSMENT 

 

The DSTPolyKF algorithm was implemented on both onshore and offshore challenging DST 

arrival time data sets for performance assessment of the algorithm.  The onshore DST data sets 

had SH source waves generated on both the Right Side (RS) and Left Side (LS) of the downhole 

seismic probe resulting in two source wave traces recorded for each depth increment. The onshore 



DST instrumentation utilized high precision triaxial accelerometers and contact triggers. The 

offshore investigation also generated both RS and LS SH source waves. In this case both “top” 

and “bottom” triaxial sensor arrangement packages were utilized. This resulted in four source wave 

traces for each depth increment. The Top Sensor (TS) and Bottom Sensor (BS) were vertically 

offset by 1m. The offshore DST instrumentation utilized geophone sensors and a geophone sensor 

trigger.  

 

3.1 Onshore Data Analysis   

Figure 3 illustrates the 

estimated LS and RS 

estimated arrival times for 

the onshore DST data set. As 

is illustrated in Fig. 3, there is 

significant variability 

between the LS and RS 

arrival estimates from 12m to 

21m. This results in 

significant variability in the 

resulting interval velocity 

estimates. Table 3 outlines the corresponding polynomial regression estimated accuracy 

parameters for the averaged arrival times (LS and RS) illustrated in Fig. 3 and orders 2 to 7. From 

the results outlined in Table 3, the 6th and 7th order polynomial aggressions have overall “best” 

accuracy parameter values as defined in Table 2. Figure 4 illustrates the averaged LS and RS 

arrivals times with the 7th order polynomial regression best fit line. Figure 5 illustrates the FMDSM 

output with source wave raypaths illustrated when processing the 7th order best fit polynomial 

regression arrival times. Table 4 outlines the estimated interval velocities and percent differences 

for polynomial regressions of orders 6 and 7. The 6th and 7th order percent differences are below 

the desired 10% for the all depths except 18.5, 19m, 19.5m (just exceeding 10%). The estimate at 

21m should be dropped due to the large percent difference. In general terms, when comparing 

polynomial regression of varying orders with similar “best” accuracy parameters the discrepancies 

of velocity estimates occurred at the end of the polynomial regression best fit lines. Figure 6 

illustrates the 7th order best fit polynomial regression interval velocity plot with an interpolated 

0.25m depth increment and the interval velocity estimate at 21m dropped. 

  

Polynomial 

Order 

RMS MAPE 𝑹𝟐 𝑹∗𝟐 

2 6.0434 7.9976 0.99727 0.996966 

3 3.9483 4.9092 0.998899 0.998705 

4 1.9703 2.0815 0.999742 0.999678 

5 1.8957 1.5455 0.999776 0.999702 

6 1.7769 1.4371 0.999816 0.999738 

7 1.6805 1.5168 0.999848 0.999765 

Table 3. Estimated polynomial accuracy parameters for 

offshore data analysis 



Figure 4. Averaged arrival times (red dots) and 7th order polynomial regression best 

fit (blue line) for the onshore real DST analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. LS and RS arrival times for the onshore real DST analysis. 

 

 

 

 



Figure 5. FMDSM output with source wave raypaths (black lines) illustrated when 

processing the 7th order best fit polynomial regression arrival times shown in Fig. 4. 

Figure 6. 7th order best fit polynomial regression interval velocity plot with an 

interpolated 0.25m depth increment and the estimate at 21m dropped for the 

onshore data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

Depth 

[m] 

6th Order 

Interval 

Velocity 

[m/s] 

7th Order 

Interval 

Velocity 

[m/s] 

6th and 7th 

Order 

Precent 

difference 
    

1 128.3 128.3 0 

1.5 151.2 171.1 6.2 

2 136.9 147.8 3.8 

2.5 113.8 109.3 2 

3 98.1 91 3.8 

3.5 88.5 82.4 3.6 

4 82.7 78.5 2.6 

4.5 79.5 77.3 1.4 

5 77.9 77.8 0.1 

5.5 77.6 79.2 1 

6 78.2 81.2 1.9 

6.5 79.6 83.4 2.3 

7 81.6 85.7 2.5 

7.5 84 87.9 2.3 

8 86.9 89.9 1.7 

8.5 90.1 91.9 1 

9 93.6 93.9 0.2 

9.5 97.5 96 0.8 

10 101.6 98.4 1.6 

10.5 106 101.4 2.2 

11 110.7 105.1 2.6 

11.5 116 109.8 2.7 

12 121.7 115.9 2.4 

12.5 128.2 123.5 1.9 

13 135.6 133.2 0.9 

13.5 144.2 145.3 0.4 

14 154.4 160.3 1.9 

14.5 166.6 178.6 3.5 

15 181.2 200.2 5 

15.5 199 224.7 6.1 

16 220.7 250.4 6.3 

16.5 246.5 274.1 5.3 

17 276.5 291.3 2.6 

17.5 308.9 298.2 1.8 

18 338.9 293.7 7.1 

18.5 357.9 280.6 12.1 

19 355.1 264.5 14.6 

19.5 325.5 251.1 12.9 

20 275.6 246.4 5.6 

20.5 219.3 259 8.3 

21 168.1 312.7 30.1 

 

 

  

Table 4. Estimated interval velocities and percent 

differences for polynomial regressions of orders  

6 and 7. 



3.2 Offshore Onshore Data Analysis   

Figure 7 illustrates the 

estimated (Top Sensor LS) 

TSLS, TSRS (Top Sensor 

RS), BSLS (Bottom Sensor 

LS) and BSRS (Bottom 

Sensor RS) estimated 

arrival times for the 

offshore DST data set. 

Table 5 outlines the 

corresponding polynomial 

regression estimated 

accuracy parameters for the 

averaged arrival times (TSLS, TSRS, BSLS, and BSRS) illustrated in Fig. 7 and orders 2 to 7. 

From the results outlined in Table 5, the 6th and 7th order polynomial aggressions have overall 

“best” accuracy parameter values as defined in Table 2. Although, the 5th order polynomial 

regression result are also very close to  6th and the 7th order polynomial results. Figure 8 illustrates 

the averaged TSLS, TSRS, BSLS and BSRS arrivals times with the 7th order polynomial regression 

best fit line. Figure 9 illustrates the FMDSM output when processing the 7th order best fit 

polynomial regression arrival times. Table 6 outlines the estimated interval velocities and percent 

differences for polynomial regressions of orders 6 and 7. Figure 10 illustrates the 7th order best fit 

polynomial regression interval velocity plot with an interpolated 0.5m depth. 

 

CONCLUSIONS 

 

Downhole Seismic Test (DST) DST provides low strain (<10-5) in-situ interval shear and 

compression wave velocity estimates.  These velocities are determined by obtaining arrival times 

of source waves as they travel through the stratigraphy and are recorded by one or more vertically 

offset seismic sensors. There are several factors which can lead to DST arrival time measurement 

errors. These measurement errors are predominantly due to poor data quality, low resolution of the 

seismic sensor and corresponding small DST depth increments, and the type of data trigger 

utilized. Poor quality DST seismic data recordings general results from “dirty” sources (e.g., poor 

coupling between seismic hammer plate and soil), poor sensor-stratigraphy coupling, complicated 

stratigraphy resulting in source wave reflections, refraction etc., and insufficient energy output of 

the seismic source. This paper has outlined a new analysis technique, the so-called DSTPolyKF 

algorithm, where analytically modelling of the DST arrival time data sets is accomplished by 

fitting high order polynomials. The main advantages of this new technique are five-fold. 1) Ability 

to utilize all arrival time estimates irrespective of measurement errors. 2) Ability to process small 

depth interval (≤ 0.5m) arrival time data sets. 3) Analytical polynomial “best fit” function allows 

for user specification of desired depth intervals for data interpolation. 4) Facilitates sophisticated 

data fusion for significantly more accurate DST interval velocity estimation. 5) Polynomial 

regression accuracy parameters quantify how well the “best fit” polynomial fits the acquired arrival 

time data sets. This paper has described the mathematically details of the DSTPolyKF algorithm 

where four best fit polynomial regression accuracy parameters were outlined. In addition, the 

performance of the DSTPolyKF algorithm was demonstrated by processing real DST data sets 

from both onshore and offshore investigations.   

Polynomial 

Order 

RMS MAPE 𝑹𝟐 𝑹∗𝟐 

2 4.8413 4.2236 0.998327 0.998264 

3 2.4921 1.9924 0.999565 0.99954 

4 1.2825 1.0099 0.999887 0.999878 

5 1.0571 0.7638 0.999925 0.999917 

6 1.0357 0.6924 0.999929 0.999921 

7 0.9672 0.6404 0.99994 0.999931 

Table 5. Estimated polynomial accuracy parameters for 

offshore data analysis 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. TS LS, TS RS, BS LS and  BS RS arrival times for the offshore real DST 

analysis. 

Figure 8. Averaged arrival times (red dots) and 7th order polynomial regression best 

fit (blue line) for the offshore real DST analysis. 



Figure 10. 7th order best fit polynomial regression interval velocity plot with an 

interpolated 0.5m depth increment for the offshore data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. FMDSM output when processing the 7th order best fit polynomial regression 

arrival times shown in Fig. 8. 



 

 

 

Depth 

[m] 

6th Order 

Interval 

Velocity 

[m/s] 

7th Order 

Interval 

Velocity 

[m/s] 

6th and 7th 

Order 

Precent 

difference 
    

1.24 89.7 89.7 0 

1.74 98.3 99.6 0.7 

2.24 105.9 108 1 

2.74 114.2 116.5 1 

3.24 123.1 125 0.8 

3.74 132.3 133.1 0.3 

4.24 141.2 140.6 0.2 

4.74 149.6 147.3 0.8 

5.24 157.1 153.3 1.2 

5.74 163.7 158.7 1.6 

6.24 169.1 163.4 1.7 

6.74 173.5 167.8 1.7 

7.24 177 171.7 1.5 

7.74 179.8 175.4 1.2 

8.24 181.9 178.8 0.9 

8.74 183.6 181.9 0.5 

9.24 185 184.8 0.1 

9.74 186.2 187.6 0.4 

10.24 187.4 190.1 0.7 

10.74 188.5 192.4 1 

11.24 189.7 194.6 1.3 

11.74 190.9 196.6 1.5 

12.24 192.2 198.4 1.6 

12.74 193.7 200 1.6 

13.24 195.3 201.4 1.5 

13.74 196.9 202.7 1.5 

14.24 198.7 203.8 1.3 

14.74 200.6 204.9 1.1 

15.24 202.5 205.8 0.8 

15.74 204.6 206.7 0.5 

16.24 206.7 207.6 0.2 

16.74 208.8 208.4 0.1 

17.24 211 209.3 0.4 

17.74 213.3 210.3 0.7 

18.24 215.5 211.4 1 

18.74 217.8 212.6 1.2 

19.24 220.1 214 1.4 

19.74 222.3 215.5 1.6 

20.24 224.6 217.2 1.7 

20.74 226.8 219.2 1.7 

21.24 229.1 221.4 1.7 

21.74 231.3 223.8 1.6 

22.24 233.5 226.5 1.5 

22.74 235.6 229.4 1.3 

23.24 237.8 232.6 1.1 

23.74 239.9 236 0.8 

24.24 242 239.7 0.5 

24.74 244.1 243.5 0.1 

25.24 246.2 247.4 0.2 

Table 6. Estimated interval velocities and percent 

differences for polynomial regressions of orders  

6 and 7. 



25.74 248.3 251.5 0.6 

26.24 250.5 255.7 1 

26.74 252.6 259.8 1.4 

27.24 254.8 263.8 1.7 

27.74 257 267.7 2 

28.24 259.2 271.2 2.3 

28.74 261.5 274.5 2.4 

29.24 263.8 277.2 2.5 

29.74 266.1 279.5 2.5 

30.24 268.5 281.1 2.3 

30.74 270.9 282.1 2 

31.24 273.4 282.4 1.6 

31.74 275.9 282.1 1.1 

32.24 278.3 281.1 0.5 

32.74 280.7 279.7 0.2 

33.24 283.1 277.8 0.9 

33.74 285.4 275.6 1.7 

34.24 287.5 273.4 2.5 

34.74 289.4 271.3 3.2 

35.24 291.1 269.6 3.8 

35.74 292.4 268.6 4.2 

36.24 293.3 268.6 4.4 

36.74 293.8 270.1 4.2 

37.24 293.7 273.6 3.5 

37.74 292.9 279.8 2.3 

38.24 291.3 289.9 0.2 

38.74 289 305.5 2.8 

39.24 285.7 329.7 7.1 

39.74 281.4 368 13.3 
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