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ABSTRACT:  The cone penetration test (CPT) is a widely used geotechnical tool which provides 

excellent stratigraphic detail and information for estimating a wide range of soil properties. CPT 

consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording 

the resistance to the cone tip or cone bearing (qm). The qm values are utilized to characterize the 

soil profile along with measured sleeve friction and pore pressure. Cone bearing measurements at 

a specific depth are blurred or averaged due to qm values being strongly influenced by soils within 

10 to 30 cone diameters from the cone tip. This blurring of the true cone tip readings results in the 

inability to identify thin and low bearing soils which are masked by the properties of the adjacent 

soils. The qmHMM-IFM algorithm was developed was developed to address the qm 

blurring\averaging limitation. The qmHMM-IFM algorithm implements a hybrid hidden Markov 

model and  iterative forward modelling technique so that true cone bearing are obtained from the 

averaged/blurred qm values. This paper demonstrates the performance of the qmHMM-IFM 

algorithm by analyzing very challenging test bed simulations where thin soil layers are interspersed 

within uniform soils. It is critical to characterize  a proposed algorithm capabilities by analyzing 

numerous test bed simulations prior to implementing on real data sets. It has been our experience 

in the industry that developed geotechnical signal processing software typically carries out 

minimal test bed simulations to verify an algorithms performance prior to implementing on real 

data sets. 

 

INTRODUCTION 

 

The Cone Penetration Test (CPT) is extensively utilized in geotechnical engineering to  

identify of sub-surface soils and their associated geotechnical properties (Lunne et al., 1997; 

Robertson, 1990; ASTM D6067, 2017). In addition, the CPT is utilize to estimate toe bearing 

capacity of piles (Eslami and Fellenius, 1995 and 1997).  In CPT a steel cone is pushed vertically 

into the ground at a typical standard rate of 2cm per second and data are recorded at constant rate 
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during penetration (typically every 1cm to 2cm). The 

cone penetrometer has electronic sensors to measure 

penetration resistance at the tip (qm) and friction in the 

shaft (friction sleeve) during penetration. A CPTU probe 

is equipped with a pore-water pressure sensor and is 

called a piezo-cones. For piezo-cones with the filter 

element right behind the cone tip (i.e., the u2 position) it 

is standard practice to correct the recorded tip resistance 

for the impact of the pore pressure on the back of the cone 

tip.  Figure 1 illustrates a schematic and the associated 

terminology of a cone penetrometer.  

The cone tip resistance measured at a particular 

depth is affected by the values above and below the 

depth of interest which results in an averaging or 

blurring of the qv values (Boulanger and DeJong, 2018;  

Robertson, 1990; Baziw and Verbeek, 2021A). This phenomenon is especially of concern when 

mapping thin soil layers which is critical for liquefaction assessment. Mathematically the measured 

cone tip resistance qm is described as (Baziw and Verbeek, 2021A) 

 

 
𝑞𝑚(𝑑) = ∑ 𝑤𝑐(𝑗) × 𝑞𝑣(∆𝑞𝑚 + 𝑗)

60×(
𝑑𝑐
∆

)

𝑗=1

+  𝑣(𝑑)   

∆𝑞𝑚= (𝑑 − ∆𝑤𝑚),   ∆𝑤𝑚= 30 × (
𝑑𝑐

∆
) 

(1) 

where 

d cone depth (m) 

dc cone tip diameter (m) 

Δ qm sampling rate (m) 

qm(d) measured cone penetration tip resistance (MPa) 

qv(d)  true cone penetration tip resistance (MPa) 

wc(d) the qv(d) averaging function (dimensionless) 

v(d) additive noise, generally taken to be white with a Gaussian probability distribution 

function (PDF) (MPa) 

In eq. (1) it assumed that wc averages qv over 60 cone diameters centered at the cone tip. 

Boulanger and DeJong (Boulanger and DeJong, 2018)  outline how to calculate wc below (after 

correcting the equation for w1 (Baziw and Verbeek, 2021)): 

 𝑤𝑐 =  
𝑤1𝑤2 

∑ 𝑤1𝑤2
 (2a) 

Fig. 1. Schematic and terminology for 

cone penetrometer (Lunne et al., 1997). 
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where: 

w1  accounts for the relative influence of any soil decreasing with increasing distance from the  

cone tip. 

w2 adjusts the relative influence that soils away from the cone tip will have on the penetration  

resistance based on whether those soils are stronger or weaker.  

𝑧′ the depth relative to the cone tip normalized by the cone diameter. 

𝑧50
′  the normalized depth relative to the cone tip where w1 = 0.5 C1. 

C1 equal to unity for points below the cone tip, and linearly reduces to a value of 0.5 for  

points located more than 4 cone diameters above the cone tip.  

mz exponent that adjusts the variation of w1 with 𝑧′. 

mq exponent that adjusts the variation of w2 with (
𝑞𝑣,𝑧′

𝑞𝑣,𝑧′=0
). 

Boulanger and DeJong (2018) provide a thorough outline and review on the setting of the  

parameters given in eq. (2) based upon extensive research and modelling. In general terms, soils 

in front of the cone tip have a greater influence on penetration resistance than the soils behind the 

cone tip. In the subsequently outlined test bed simulations the parameters in eq. (2) are set identical 

to those outlined by Boulanger and DeJong. In this case, exponents mq = 2 and mz = 3.       

Baziw and Verbeek (2021A) developed an algorithm (the so called qmHMM-IFM) to optimally 

obtain true qv cone bearing estimates from blurred measurements qm. The qmHMM-IFM algorithm 

combines the Bayesian recursive estimation (BRE) Hidden Markov Model (HMM) filter with 

Iterative Forward Modelling (IFM) parameter estimation in a smoother formulation for optimal 

estimation. Preliminary test bed analysis of the qmHMM-IFM algorithm demonstrated it to be a 

very promising mathematical tool for obtaining qv estimates from measured cone bearing values. 

Subsequent to the initial work of the authors (Baziw and Verbeek (2021A)) upgrades and 

modifications of the qmHMM-IFM algorithm have been made and additional challenging and 

extensive new test bed analysis has been carried out. This paper briefly outlines the current 

qmHMM-IFM algorithm formulation and present the results from very challenging test bed 

simulations. The test bed simulations focused on extracting masked thin bed layers.  

 

qmHMM-IFM ALGORITHM FILTER FORMULATION 

 

The qmHMM-IFM algorithm implements a hybrid BRE HMM filter and IFM filter 

formulation. Baziw and Verbeek (2021A) outline the details of the BRE, HMM and IFM signal 
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processing and optimal estimation tools. For completeness the details of qmHMM-IFM algorithm 

HMM and IFM components are summarized.  

 

HMM Filter Formulation 

 

The HMM filter (also termed a grid-based filter) has a discrete state-space representation and 

has a finite number of states.  In the HMM filter the posterior PDF is represented by the delta 

function approximation as follows:  

 𝑝(𝑥𝑘−1|𝑧1:𝑘−1)   =   ∑ 𝑤𝑘−1\𝑘−1
𝑖 𝛿(𝑥𝑘−1 − 𝑥𝑘−1

𝑖 )

𝑁𝑠

𝑖=1

 (3) 

where 𝑥𝑘−1
𝑖   and 𝑤𝑘−1|𝑘−1

𝑖 ,  i = 1,…,Ns, represent the fixed discrete states and associated 

conditional probabilities, respectively, at time index k-1, and Ns the number of particles utilized. 

In the case of the qmHMM-IFM algorithm the HMM discrete states represent possible qv values 

where maximum, minimum and resolution values are specified.  The HMM governing equations 

are outlined in Table 1. 

 

Iterative Forward Modelling 

Iterative forward modeling (IFM) is a parameter estimation technique which is based upon 

iteratively adjusting the parameters until a user specified cost function is minimized. The desired 

parameter estimates are defined as those which minimize the user specified cost function. The IFM 

technique which is utilized within the qv estimation algorithm is the downhill simplex method 

(DSM) originally developed by Nelder and Mead (Nelder and Mead, 1965).  A simplex defines 

the most elementary geometric figure of a given dimension: a line in one dimension, the triangle 

in two dimensions, the tetrahedron in three, etc; therefore, in an N-dimensional space, the simplex 

is a geometric figure that consists of N+1 fully interconnected vertices. The DSM starts at N + 1 

vertices that form the initial simplex. The initial simplex vertices are chosen so that the simplex 

occupies a good portion of the solution space.  In addition, it is also required that a scalar cost 

function be specified at each vertex of the simplex. The general idea of the minimization is to keep 

the minimum within the simplex during the optimization, at the same time decreasing the volume 

of the simplex.  The DSM searches for the minimum of the costs function by taking a series of 

steps, each time moving a point in the simplex away from where the cost function is largest. The 

simplex moves in space by variously reflecting, expanding, contracting, or shrinking. The simplex 

size is continuously changed and mostly diminished, so that finally it is small enough to contain 

the minimum with the desired accuracy.  
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Table 1. HMM Governing Equations 

STEP DESCRIPTION MATHEMATICAL REPRESENTATION EQ. 

1 
Initialization (k=0) – initialize 

particle weights. 
e.g., 𝑤𝑘

𝑖  ~ 1/𝑁𝑠, i = 1,…,Ns. (4) 

    

2 Prediction - predict the weights. 𝑤𝑘\𝑘−1
𝑖   =   ∑ 𝑤𝑘−1\𝑘−1

𝑗
𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑗

)

𝑁𝑠

𝑗=1

 (5) 

3 Update - update the weights. 𝑤𝑘\𝑘
𝑖   =  

𝑤𝑘\𝑘−1
𝑖 𝑝(𝑧𝑘|𝑥𝑘

𝑖 )

∑ 𝑤𝑘\𝑘−1
𝑗

𝑝(𝑧𝑘|𝑥𝑘
𝑗
)

𝑁𝑠

𝑗=1

 (6) 

4 

Obtain optimal minimum variance 

estimate of the state vector and 

corresponding error covariance. 

�̂�𝑘   ≈   ∑ 𝑤𝑘|𝑘
𝑖 𝑥𝑘

𝑖

𝑁𝑠

𝑖=1

 

𝑃�̂�𝑘
  ≈   ∑ 𝑤𝑘|𝑘

𝑖 (𝑥𝑘
𝑖 − �̂�𝑘)

𝑁𝑠

𝑖=1

(𝑥𝑘
𝑖 − �̂�𝑘)𝑇 

(7) 

5 Let k = k+1 & iterate to step 2.   

In the above equations it is required that the likelihood pdf 𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) and the transitional 

probabilities 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑗
) be known and specified. 

 

qmHMM-IFM Algorithm  

 

The HMM portion of the qmHMM-IFM algorithm implements a BRE smoother. BRE smoothing 

uses all measurements available to estimate the state of a system at a certain time or depth in the 

qv estimation case (Arulampalam et al., 2002; Baziw, 2007; Gelb, 1974). This requires both a 

forward and backward filter formulation.  The forward HMM filter (�̂�𝑘
𝐹) processes measurement 

data (qm) above the cone tip (𝑗 = 1 𝑡𝑜 30 × (
𝑑𝑐

∆
)) in (1)).  Next the backward HMM filter (�̂�𝑘

𝐵) is 

implemented, where the filter recurses through the data below the cone tip (𝑗 = 30 × (
𝑑𝑐

∆
)  𝑡𝑜 60 ×

(
𝑑𝑐

∆
) in (1)) starting at the final qm value.  The optimal estimate for 𝑞𝑣 is then defined as 

 �̂�𝑘
𝑣 = (�̂�𝑘

𝐹 + �̂�𝑘
𝐵)/2 (8) 

where the index k represents each qm measurement. 

In both the forward and backward HMM filter formulation a bank of discrete qv values (i = 1 

to N) varying from low (qtL) to high (qtH) and a corresponding qt resolution qtR  are specified. The 

required number of fixed grid HMM states is given as NS = (qtH- qtL)/qtR. In Table 1 the notation 

of the states xi is mapped to qi to reflect the bank of qt values. The current qmHMM-IFM  
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formulation automatically sets the minimum and maximum limits of the qv values based upon the 

minimum and maximum cone bearing values qm measured.  

 
𝑞𝑡𝐿 = 𝑞𝑚𝑖𝑛 − 0.5𝑞𝑚𝑖𝑛, where 𝑞𝑚𝑖𝑛 ≥ 0 

𝑞𝑡𝐻 = 𝑞𝑚𝑎𝑥 + 0.5𝑞𝑚𝑎𝑥 

(9a) 

(9b) 

In eqs. 9(a) and 9(b) qmin and qmax denote the minimum and maximum qm values measured, 

respectively.  

In the qmHMM-IFM  HMM forward and backward filter formulation the transitional 

probabilities (i.e., 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑗
) or 𝑝(𝑞𝑘

𝑖 |𝑞𝑘−1
𝑗

) ) for each HMM state (i.e., discrete cone tip, q,i) is 

set equal due to the fact that there is equal probability of moving from a current cone tip value to 

any other value between the range qtL to qtH.  The likelihood PDF 𝑝(𝑧𝑘|𝑞𝑘
𝑖 ) in the HMM filter 

outlined in Table 1 is calculated based upon an assumed Gaussian measurement error as follows: 

 
𝑝(𝑧𝑘|𝑞𝑘

𝑖 ) =   
1

√2𝜋𝜎
𝑒

[−
(𝑞𝑚(𝑑)−𝑧𝑘

𝑖 )

2𝜎2 ]

 
(10) 

where σ2is the variance of the measurement noise.  Baziw and Verbeek (2021A) outline the details 

of the qmHMM-IFM algorithm HMM forward and backward filter formulation.  

IFM is incorporated into the qmHMM-IFM algorithm so that initially estimated IFM qv 

estimates are feed into the HMM smoothing filter as initial values. This results in significantly 

more accurate results. Instead of attempting to estimate all the unknown qv values with the HMM 

smoother (below the cone depth for the forward HMM analysis, and above the cone for the 

backward HMM analysis) IFM is utilized where only a fraction of the qv values are required to be 

estimated. In this process constant layer qv values and their corresponding depth extents are 

estimated for a maximum number of layers within the next wc window. Baziw and Verbeek (2021) 

elaborate on the IFM portion of the qmHMM-IFM algorithm. 

 

qtHMM-IFM  THIN LAYER TEST BED SIMULATIONS 

 

The performance of the qmHMM-IFM algorithm was evaluated by carrying out challenging 

test bed simulations of variable thin bed layering. In addition, the thin bed layer challenges outlined 

by Boulanger and DeJong (2018) is revisited. In the test bed simulations outlined below the 

measured blurred\averaged cone bearing values qm are generated by applying eq. (1) to the true 

cone bearing values qv.  

 

Test Bed Simulation 1 

In this test bed simulation strong thin layers are interspersed within a weak uniform cone soil 

profile bearing. Figure 3 illustrates a true cone bearing profile (light grey trace) of uniform soil 

with a cone bearing of 5 MPa except for thin intervals that are 0.1 m, 0.08 m, and 0.15 m thick 

with corresponding cone bearing values of 100 MPa, 80 MPa, and 60 MPa, respectively. The 

resulting qm values were then calculated (black line in Fig. 3).  Using the qmHMM-IFM algorithm 
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the qv values were then estimated based on the qm values (black dotted line in Fig. 3).  It shall be 

obvious that the algorithm performed well as the derived qv values closely matched the originally 

specified qv values. This test bed simulation analysis is important in that it highlights strong thin 

layers maybe perceived to be much weaker when they are interspersed within a weak uniform soil. 

This may erroneously trigger liquefaction concerns. 

 

Test Bed Simulation 2 

In this test bed simulation 

challenging cone bearing 

profile is processed where 

there strong and weak thin soil 

layers interspersed within a 

uniform cone soil profile. 

Figure 4A illustrates a true 

cone bearing profile (light grey 

trace) of uniform soil with a 

cone bearing of 80 MPa except 

for thin intervals that are 0.1 

m, 0.08 m, 0.2 m, 0.15 m, and 

0.4 m thick with corresponding 

cone bearing values of 100 

MPa, 30 MPa, 100 MPa, 40 

MPa and 120 MPa, 

respectively. The resulting qm 

values were then calculated (black 

line in Fig. 4A).  Figure 4B 

illustrates the percentage difference between qv and qm (black line). Using the qmHMM-IFM 

algorithm the qv values were then estimated based on the qm values (black dotted line in Fig. 4A). 

It shall be obvious that the algorithm performed well as the derived qv values closely matched the 

originally specified qv values. Figure 4B illustrates the percentage difference between the 

estimated qv values and the true qv values (black dotted line). 

 

Test Bed Simulation 3 

 

In this test bed analysis the thin bed layer challenges outlined by Boulanger and DeJong (2018) is 

revisited. Boulanger and DeJong (2018) simulated the potential effects of what they characterize 

as “noise” with inverting measurements from very thin interlayers using their “inverse” filtering 

technique defined by eqs. (9) to (14) of their paper. Boulanger and DeJong illustrate this “noise” 

by processing the variable thin layers illustrated in Fig. 5A. Figure 5A illustrates a profile of 

uniform soil with a cone bearing of 10 except for thin intervals that are 1.1, 1.7, 2.2, and 3.4 cone 

Figure 3. TEST BED 1 Specified qv values (grey line), 

derived qm values (black line) and estimated qv values 

based on qm values (black dotted line).  
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Figure 4. TEST BED 2 (A) Specified qv values (grey line), derived qm values (black line) and 

estimated qv values based on qm values (black dotted line). Percent differences between specified 

and estimated qv values (black line) and qm values and estimated qv values (black dotted line). 

 

diameters thick and cone bearing values of 12. The simulated data was generated with a 2 cm 

sampling interval. This corresponds to thin depth intervals having 2, 3, 4, and 6 data points,  

respectively, with cone bearing values of 12. This simulated cone bearing profile was then feed 

into Boulanger’s and DeJong’s “inverse” filtering algorithm to give the very unstable estimates 

illustrated in Fig. 5A. These unstable results led Boulanger and DeJong to develop and incorporate 

ad hoc low-pass spatial filter and smoother into their “inverse” filtering algorithm. 

 

(A) 

 

(B) 

 

 

 

 

 

Equation (1) outlines an averaging mathematically operation; therefore, the simulated qm cone 

bearing values illustrated in Fig. 5A would not be seen in practice and is inappropriate as a test 

bed simulation. The qm values have very “sharp” transitions at the 10 to 12 interfaces. This 

contradicts the averaging operation defined by eq. (1). Processing the qm values of Fig. 5A results 

in highly variable qv estimates. Figure 5B illustrates the near duplication of Boulanger’s and 

DeJong’s output results illustrated in Fig. 5A. Figure 5C illustrates the measured qm values  (black 

trace) when the measured “sharp” qm values (i.e., mapped to true qv values) of Fig. 5A (light grey 

trace) are feed into eq. (1). Clearly the qm values illustrated in Fig. 5C values are significantly 

smoothed and reduced in amplitude due to the background qv value of 10 as expected.  Figure 6 

illustrates the output of the qmHMM-IFM algorithm when processing the qm values of Fig. 5C. As 

is shown in Fig. 6, as thin layer thickness increase the qmHMM-IFM algorithm does a better job of 

estimating the layer thickness and cone bearing value of the thin bed layer. These are expected 

results.  
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(A)

 

(B)

 

(C)

 

CONCLUSION 

Cone penetrometer testing (CPT) is an 

effective, fast and relatively inexpensive 

system for determining the in-situ subsurface 

stratigraphy and to estimate geotechnical 

parameters of the soils present. In CPT, a cone 

on the end of a series of rods is pushed into the 

ground at a constant rate and resistance to the 

cone tip is measured (qm). The qm values are 

utilized to characterize the soil profile. 

Unfortunately, the measured cone tip 

resistances are blurred and/or averaged due to 

the layers above and below the cone tip 

affecting the measured tip resistance. The 

blurring of qm measurements can result in the 

distortion of the soil profile characterization 

especially if thin soil layers are present. BCE 

developed the so called qmHMM-IFM algorithm so 

that true cone bearing measurements could 

Figure 5. (A) Significant instability in the estimates of qt when using the Boulanger and DeJong 

inversion estimation algorithm. (Boulanger and DeJong, 2018). (B) Duplication of the results 

obtained by Boulanger and DeJong (1981). (C) True qv values (light grey trace) superimposed 

upon measured cone bearing values qm (black trace) (Baziw and Verbeek, 2021B). 

Figure 6. Specified qv values (grey line) of Fig. 

5(C), derived qm  values (black line) of Fig. 5(C) 

and estimated qv  values based on qm  values 

(black dotted line).  
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optimally be extracted from measured values. This paper outlined the current formulation of the 

qmHMM-IFM algorithm where an  iterative forward modelling technique is incorporated into a 

hidden Markov model filter. This paper demonstrated the performance of the qmHMM-IFM 

algorithm where test bed simulation were carried out which consisted of variable this soil layers 

interspersed within uniform soil profiles. In addition, the thin bed layer challenges outlined by 

Boulanger and DeJong (2018) was revisited.  The test bed simulations have demonstrated that the 

qmHMM-IFM algorithm can derive accurate qv values from a qm profile when variable thin soil 

layers are interspersed within uniform soil profiles. The authors will carry out further test bed 

simulations and subsequently apply the qmHMM-IFM algorithm on real data sets.   
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