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ABSTRACT:  The cone penetration test (CPT) is an extensively implemented geotechnical tool 

for assessing soil properties and mapping soil profiles. CPT consists of pushing at a constant rate 

an electronic penetrometer into penetrable soils and recording the resistance to the cone tip or cone 

bearing (qc). The qc values (after correction for the pore water pressure to get qt) are utilized to 

characterize the soil profile along with measured sleeve friction. Cone bearing measurements at a 

specific depth are blurred or averaged due to qc values being strongly influenced by soils within 

10 to 30 cone diameters from the cone tip. This blurring of the true cone tip readings results in the 

inability to identify thin and low bearing soils which are masked by the properties of the adjacent 

soils. The cone tip diameter is directly related to the extent of blurring of the qc values. A larger 

cone tip diameter will resulted in greater qc blurring. The most common cone tips have associate 

areas of 5 cm2, 10 cm2 and 15 cm2. The qcHMM algorithm was developed to address the qc 

blurring\averaging limitation. The qcHMM algorithm implements a hidden Markov model 

smoother so that true cone bearing are obtained from the averaged/blurred qc values. This paper 

illustrates how the qcHMM algorithm can be implemented so that qc profiles obtained from cones 

with varying cone tip diameters can be corrected to give consistent results.  

 

INTRODUCTION 

 

The Cone Penetration Test (CPT) is a geotechnical in-situ tool which is utilized to identify 

and characterize sub-surface soils (Lunne et al., 1997; Robertson, 1990; ASTM D6067, 2017).  In 

addition, the CPT is utilize to estimate toe bearing capacity of piles (Eslami and Fellenius, 1995 

and 1997).  In CPT a steel cone is pushed vertically into the ground at a typical standard rate of 

2cm per second and data are recorded at constant rate during penetration (typically every 1cm to 
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2cm). The cone penetrometer has electronic sensors to 

measure penetration resistance at the tip (qm) and friction 

in the shaft (friction sleeve) during penetration. A CPTU 

probe is equipped with a pore-water pressure sensor and 

is called a piezo-cones. For piezo-cones with the filter 

element right behind the cone tip (the so-called u2 

position) it is standard practice to correct the recorded tip 

resistance for the impact of the pore pressure on the back 

of the cone tip.  Figure 1 illustrates a schematic and the 

associated terminology of a cone penetrometer.  

The cone tip resistance measured at a particular 

depth is affected by the values above and below the depth 

of interest which results in an averaging or blurring of the 

qv values (Boulanger and DeJong, 2018;  Robertson, 

1990; Baziw and Verbeek, 2021, 2022a and 2022b). This 

phenomenon is especially of concern when mapping thin soil layers which is critical for 

liquefaction assessment. Mathematically the measured cone tip resistance qc is described as (Baziw 

and Verbeek, 2021 and 2022) 

 
𝑞𝑐(𝑑) = ∑ 𝑤𝑐(𝑗) × 𝑞𝑣(∆𝑞𝑚 + 𝑗)

60×(
𝑑𝑐
∆

)

𝑗=1

+  𝑣(𝑑)   

∆𝑞𝑐= (𝑑 − ∆𝑤𝑚),   ∆𝑤𝑚= 30 × (
𝑑𝑐

∆
) 

(1) 

where 

d cone depth (m) 

dc cone tip diameter (m) 

Δ qc sampling rate (m) 

qc(d) measured cone penetration tip resistance (MPa) 

qv(d)  true cone penetration tip resistance (MPa) 

wc(d) the qv(d) averaging function (dimensionless) 

v(d) additive noise, generally taken to be white with a Gaussian probability distribution 

function (PDF) (MPa) 

In eq. (1) it assumed that wc averages qv over 60 cone diameters centered at the cone tip. 

Boulanger and DeJong (Boulanger and DeJong, 2018)  outline how to calculate wc below (after 

correcting the equation for w1 (Baziw and Verbeek, 2021)): 

 𝑤𝑐 =  
𝑤1𝑤2 

∑ 𝑤1𝑤2
 (2a) 

Fig. 1. Schematic and terminology for 

cone penetrometer (Lunne et al., 1997). 
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𝑤1 =

𝐶1

1 + |(
𝑧′

𝑧50
′ )

𝑚𝑧

|

 
(2b) 

 
𝑤2 =  

√

2

1 +  (
𝑞𝑣,𝑧′

𝑞𝑣,𝑧′=0
)

𝑚𝑞
 

(2c) 

where: 

w1  accounts for the relative influence of any soil decreasing with increasing distance from the  

cone tip. 

w2 adjusts the relative influence that soils away from the cone tip will have on the penetration  

resistance based on whether those soils are stronger or weaker.  

𝑧′ the depth relative to the cone tip normalized by the cone diameter. 

𝑧50
′  the normalized depth relative to the cone tip where w1 = 0.5 C1. 

C1 equal to unity for points below the cone tip, and linearly reduces to a value of 0.5 for  

points located more than 4 cone diameters above the cone tip.  

mz exponent that adjusts the variation of w1 with 𝑧′. 

mq exponent that adjusts the variation of w2 with (
𝑞𝑣,𝑧′

𝑞𝑣,𝑧′=0
). 

Boulanger and DeJong (2018) provide a thorough outline and review on the setting of the  

parameters given in eq. (2) based upon extensive research and modelling. In general terms, soils 

in front of the cone tip have a greater influence on penetration resistance than the soils behind the 

cone tip. In the subsequently outlined test bed simulations the parameters in eq. (2) are set identical 

to those outlined by Boulanger and DeJong. In this case, exponents mq = 2 and mz = 3.     

Baziw and Verbeek (2021, 2022a and 2022b) developed an algorithm to optimally obtain true 

qv cone bearing estimates from blurred measurements qc. The initial algorithm developed by Baziw 

and Verbeek (2021 and 2022a) (the so called qcHMM-IFM) combined a Bayesian recursive 

estimation (BRE) Hidden Markov Model (HMM) filter with Iterative Forward Modelling (IFM) 

parameter estimation in a smoother formulation. In recent modifications and enhancements of the 

qcHMM (Baziw and Verbeek, 2022b) it was possible to drop the IFM portion of the algorithm. 

This was predominantly accomplished by refining the HMM filter parameters. This paper briefly 

outlines the current qcHMM algorithm formulation and presents the results from very challenging 

test bed simulations. The simulated cone bearing profiles are generated for a true cone bearing 

profile qv where acquired measured values qc are obtained by implementing eq. (1) for cone tip 

areas of 5cm2, 10cm2, and 15cm2. The test bed simulations demonstrated that the qcHMM 

algorithm gave nearly identical qv values for the data acquired utilizing cone tip areas of 5cm2, 

10cm2, and 15cm2.  
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qcHMM ALGORITHM FILTER FORMULATION 

 

The HMM filter (also termed a grid-based filter) has a discrete state-space representation and 

has a finite number of states (Arulampalam et al., 2002). In the HMM filter the posterior PDF is 

represented by the delta function approximation as follows:  

 𝑝(𝑥𝑘−1|𝑧1:𝑘−1)   =   ∑ 𝑤𝑘−1\𝑘−1
𝑖 𝛿(𝑥𝑘−1 − 𝑥𝑘−1

𝑖 )

𝑁𝑠

𝑖=1

 (3) 

where 𝑥𝑘−1
𝑖   and 𝑤𝑘−1|𝑘−1

𝑖 ,  i = 1,…,Ns, represent the fixed discrete states and associated 

conditional probabilities, respectively, at time index k-1, and Ns the number of particles utilized. 

In the case of the qcHMM algorithm the HMM discrete states represent possible qv values where 

maximum, minimum and resolution values are specified.  The HMM governing equations are 

outlined in Table 1. 

 

The qcHMM algorithm implements a BRE smoother. BRE smoothing uses all measurements 

available to estimate the state of a system at a certain time or depth in the qv estimation case 

(Arulampalam et al., 2002; Baziw and Verbeek, 2021, 2022A, and 2022B; Gelb, 1974). This 

requires both a forward and backward filter formulation. The forward HMM filter (�̂�𝑘
𝐹) processes 

measurement data (qm) above the cone tip (𝑗 = 1 𝑡𝑜 30 × (
𝑑𝑐

∆
)) in (1)). Next the backward HMM 

Table 1. HMM Governing Equations 

STEP DESCRIPTION MATHEMATICAL REPRESENTATION EQ. 

1 
Initialization (k=0) – initialize 

particle weights. 
e.g., 𝑤𝑘

𝑖  ~ 1/𝑁𝑠, i = 1,…,Ns. (4) 

    

2 Prediction - predict the weights. 𝑤𝑘\𝑘−1
𝑖   =   ∑ 𝑤𝑘−1\𝑘−1

𝑗
𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑗 )

𝑁𝑠

𝑗=1

 (5) 

3 Update - update the weights. 𝑤𝑘\𝑘
𝑖   =  

𝑤𝑘\𝑘−1
𝑖 𝑝(𝑧𝑘|𝑥𝑘

𝑖 )

∑ 𝑤𝑘\𝑘−1
𝑗

𝑝(𝑧𝑘|𝑥𝑘
𝑗)𝑁𝑠

𝑗=1

 (6) 

4 

Obtain optimal minimum variance 

estimate of the state vector and 

corresponding error covariance. 

�̂�𝑘   ≈   ∑ 𝑤𝑘|𝑘
𝑖 𝑥𝑘

𝑖

𝑁𝑠

𝑖=1

 

𝑃𝑥𝑘
  ≈   ∑ 𝑤𝑘|𝑘

𝑖 (𝑥𝑘
𝑖 − �̂�𝑘)

𝑁𝑠

𝑖=1

(𝑥𝑘
𝑖 − �̂�𝑘)𝑇 

(7) 

5 Let k = k+1 & iterate to step 2.   

In the above equations it is required that the likelihood pdf 𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) and the transitional 

probabilities 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑗
) be known and specified. 
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filter (�̂�𝑘
𝐵) is implemented, where the filter recurses through the data below the cone tip (𝑗 =

30 × (
𝑑𝑐

∆
)  𝑡𝑜 60 × (

𝑑𝑐

∆
) in (1)) starting at the final qm value.  The optimal estimate for 𝑞𝑣 is then 

defined as 

 �̂�𝑘
𝑣 = (�̂�𝑘

𝐹 + �̂�𝑘
𝐵)/2 (8) 

where the index k represents each qm measurement. 

In both the forward and backward HMM filter formulation a bank of discrete qvvalues (i = 1 

to N) varying from low (qvL) to high (qvH) and a corresponding qv resolution qvR  is specified. The 

required number of fixed grid HMM states is given as NS = (qvH- qvL)/qvR. In Table 1, the notation 

of the states xi is mapped to qi to reflect the bank of qvvalues. 

In the qmHMM-IFM  HMM forward and backward filter formulation the transitional 

probabilities (i.e., 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑗 ) or 𝑝(𝑞𝑘
𝑖 |𝑞𝑘−1

𝑗 ) ) for each HMM state (i.e., discrete cone tip, q,i) is 

set equal due to the fact that there is equal probability of moving from a current cone tip value to 

any other value between the range qvL to qvH.  The likelihood PDF 𝑝(𝑧𝑘|𝑞𝑘
𝑖 ) in the HMM filter 

outlined in Table 1 is calculated based upon an assumed Gaussian measurement error as follows: 

 
𝑝(𝑧𝑘|𝑞𝑘

𝑖 ) =   
1

√2𝜋𝜎
𝑒

[−
(𝑞𝑚(𝑑)−𝑧𝑘

𝑖 )

2𝜎2 ]

 
(10) 

where σ2 is the variance of the measurement noise.  Baziw and Verbeek (2021) outline the details 

of the qcHMM algorithm HMM forward and backward filter formulation. The current qcHMM 

filter formulation no longer requires the setting of minimum and maximum limits of the qv values 

(Baziw and Verbeek, 2022A). 

 

qcHMM VARYING CONE DIAMETER TEST BED SIMULATIONS 

 

The performance of the qcHMM algorithm was evaluated by carrying out a challenging test 

bed simulations. The simulated cone bearing profiles are generated for a true cone bearing profile 

qv where acquired measured values qc are obtained by implementing eq. (1) for cone tip areas of 

5cm2, 10cm2, and 15cm2.   

Figure 2 illustrates a true cone bearing profile qv (black trace) of a challenging soil profile 

containing variable thin layers. The measured values obtained by implementing eq. (1) for cone 

tip areas of 5cm2 (red trace), 10cm2 (green trace)  and 15cm2 (blue trace) are also illustrated in Fig. 

2. As expected, a larger cone tip area/diameter will result in greater qc blurring. Alternatively, 

relatively smaller area cone tips have cone bearing measurements which are more susceptible to 

anomalous peaks and troughs due to the relatively small diameter cone tip penetrating sandy, silty 

and gravelly soils (Baziw and Verbeek, 2022b).  Figure 3 illustrates the output of the qcHMM 

algorithm when processing the 5cm2 qc data. In Fig. 3, the black trace is the 5cm2 qc values, the 

red trace is the true cone bearing values qv and the blue trace is the qcHMM estimated cone bearing 

values qv
/ (blue trace). As is shown in Fig. 3, the estimated qv

/ values are nearly identical to the 

true values qv for the 5cm2 qc data set.  
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Figure 3. Specified qc values (black trace), true cone bearing values 

qv (red trace) and qcHMM estimated cone bearing qv
/ (blue trace) for 

the 5cm2 cone tip.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. Specified qv values (black trace) and derived qc values for 

cone tip diameters of 5cm2 (red trace), 10cm2 (green trace)  and 

15cm2 (blue trace). 
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Figure 4. Specified qc values (black trace), true cone bearing values 

qv (red trace) and qcHMM estimated cone bearing qv
/ (blue trace) 

for the 10cm2 cone tip.  

Figure 4 illustrates the output of the qcHMM algorithm when processing the 10cm2 qc data. In 

Fig. 4, the black trace is the 10cm2 qc values, the red trace is the true cone bearing values qv and 

the blue trace is the qcHMM estimated cone bearing values qv
/ (blue trace). As is shown in Fig. 4, 

the estimated qv
/ values are nearly identical to the true values qv for the 10cm2 qc data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 illustrates the output of the qcHMM algorithm when processing the 15cm2 qc data. In 

Fig. 5, the black trace is the 15cm2 qc values, the red trace is the true cone bearing values qv and 

the blue trace is the qcHMM estimated cone bearing values qv
/ (blue trace). As is shown in Fig. 5, 

the estimated qv
/ values are nearly identical to the true values qv for the 15cm2 qc data set. Figure 

6 illustrates the superposition of the true qv values (black trace) and the qcHMM estimated qv
/ values 

for the 5cm2 cone tip (red trace), 10cm2 cone tip (green trace), and 15cm2 cone tip (blue trace). As 

is evident in Fig. 6, the qcHMM estimated qv
/ values for the variable cone tip areas are nearly 

identical to the true values. This test bed simulation clearly demonstrates that the qcHMM 

algorithm can be implemented so that qc profiles obtained from cones with varying cone tip 

diameters can be corrected to give consistent\identical  results.  
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Figure 5. Specified qc values (black trace), true cone bearing values 

qv (red trace) and qcHMM estimated cone bearing qv
/ (blue trace) 

for the 15cm2 cone tip.  

Figure 6. Specified true qv values (black trace) and the qcHMM 

estimated qv
/ values for the 5cm2 cone tip (red trace), 10cm2 cone 

tip (green trace), and 15cm2 cone tip (blue trace).  
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CONCLUSION 

This paper outlines the current qcHMM algorithm formulation. The qcHMM algorithm was 

developed to address the cone bearing qc blurring\averaging limitation where the resolution of a 

cone bearing profile can be significantly reduced. The qcHMM algorithm implements a hidden 

Markov model smoother so that true cone bearing are obtained from the averaged/blurred qc 

values. The cone tip diameter is directly related to the extent of blurring of the qc values. A larger 

cone tip diameter will resulted in greater qc blurring. The most common cone tips have associate 

areas of 5 cm2, 10 cm2 and 15 cm2. A challenging test bed simulation outlined in this paper has 

clearly shown that the qcHMM algorithm can be implemented so that qc profiles obtained from 

cones with varying cone tip diameters can be corrected to give consistent\identical results. 
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