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ABSTRACT

Since 1979, Offshore Systems Ltd. (OSL) has been
involved in the development of Electronic Chart Display
and Information Systems (ECDIS) and has recently
incorporated radar overlay into ECPINS?, thus enabling the
implementation of target-tracking filters. The introduction
of radar overlay and Kalman Filters into ECDIS
development will facilitate the introduction of a single-
person bridge in which navigation equipment will be
housed in a single unit and electronic charts will replace
the use of paper charts. The target tracking and dead
reckoning filters will also contribute towards automating
mariner navigation, thus making it more reliable, accurate,
and safe by making it less dependent on the operator. This

paper presents and analyzes a Kalman Filter which is
designed for vessel navigation and target tracking.

To reduce computer computation, the states in the optimal
navigation and target-tracking system model were
decoupled, resulting in two cascaded Kalman Filters. The
first filter outlined is an eleven statc extended dead
reckoning Kalman filter (DRKF). The second filter
outlined is a twelve state extended target tracking Kalman
filter (TTKF). This paper discusses these two filters in
detail, and outlines their state and measurement model
equations. In addition, the paper illustrates how these two
filters are integrated so that a single DRKF feeds vessel
position and velocity estimates to multiple twelve-state
TTKEF filters in onder to track multiple targets.

The performance of the dead reckoning / target tracking
Kalman filter was evaluated by processing synthetic data.
The true and estimated position and velocity states are
presented and compared along with the comresponding
estimation error covariance values. From the results
obtained and analyses conducted, it was found that the
decoupled system model and serial linked Kalman Filters
performed close to the coupled system and that a
substantial savings of computer computation was achieved.
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1.0 INTRODUCTION

ECDIS is a fairly new technology in the marine industry
and is slowly starting to take root. OSL has been involved
in ECDIS development for the past 14 years and has
gained extensive insight into its capabilities and limitations
{1]. The highly attractive feature of ECDIS is that it
combines hydrographic chart data with position and
orientation information obtained from the ship's
gyrocompass and electronic navigation aids and it displays
the information on a video screen [2]. Several navigational
measurements are integrated in order to provide the
mariner with real-time tracking of the vessel’s position
relative to coastal and bathymetric landforms and possible
traffic.

This paper outlines OSL’s current development of filters
which allow for this real-time tracking of the vessel and
radar tracked targets. The kinematic and mecasurcment data
is designed to fit into 2 Kalman Filter (KF) formulation.
The Kalman Filter is an optimal (in a least squares sense)
recursive filter which is based on state-space, time-domain
formulation of physical problems. A thorough discussion
of the continuous, discrete and nonlinear versions of the
KF is given in [3]. Several of the marine navigational
measurement aids are nonlinear in nature (e.g., radar,
gyrocompass, and speedlog); therefore, it is necessary o
apply a set of KF equations which takes into account these
nonlinearities.

There are several creative KF variations for taking into
account nonlinear dynamics, but the two most widely used
are the Extended and Lincarized Kalman Filter (EKF and
LKF) and their derivatives. The LKF is so designed that
it linearizes about some nominal conditions in state space,
while the EKF linearizes about the state space that is
continually updated with the state estimates resulting from
measurements. The EKF is selected rather than the LKF,
because in marine navigation one is not linearizing about
a nominal set of states. The basic development of the EKF
is outlined in [4]. The following sections discuss the Dead
Reckoning Kalman Filter (DRKF) and Target Tracking
Kalman Filter (TTKF). The TTKF applies the vessel’s
position and velocity estimates from the DRKF and radar
range and azimuth measurements in order to derive target
position and velocity estimates. The DRKF and TTKF are
discussed in detail in Sections 2.0 and 2.2.

In general, the number of multiplications necessary in a
standard error covariance calculation varies as the third
power of the number of states [S]. Therefore, the system
model and corresponding state size of the optimal dead
reckoning/target tracking Kalman filter (DRTTKF) was

reduced. The optimal DRTTKF would have consisted of
a single system model describing the vessel and target
kinematic and measurement equations and containing error
covariance matrix dimensions of up to 131x131 (i.c., for
twenty targets). The decoupling of the system states in
the optimal DRTTKF was performed to reduce the amount
of numerical operations neccssary to compute the error
covariance matrix to a practical amount.

The computational saving in decoupling the DRTTKF
system state size into one eleven state DRKF and multiple
twelve state TTKFs can be substantial. If one considers
the third power rule, an n-state optimal DRTTKF would
require kn’ (k reflects the computer processing speed)
multiplications each time its covariance matrix Iis
propagated. If one breaks the n state optimal DRTTKFs,
each with dimension n/m, the number of multiplications to
propagate the error covariance matrix is mk(n*/m?), which
is a substantial computation reduction. For example, if one
considers a suboptimal DRTTKF with 10 targets, one has
10k(n*/1000) or 0.01kn’ multiplications; this results in
approximately a 99% reduction in computcr calculations.
Sections 2.0 and 2.2 discuss the suboptimal DRTTKEF in
more detail and Sections 2.1 and 2.3 analyze the
performance of the suboptimal DRTTKF when processing
synthetic data.

2.0 Dead Reckoning Kalman Filter

To get a current position estimate, dead reckoning requires
obtaining good estimates of the velocity vector in order to
integrate it ahcad in time from some known position.

‘The filter presented in this section attempts to integrate all
of the vessel's instrumention to get the most accurate
vessel position and velocity estimates. In addition, the
Kalman Filter introduced here takes into account vessel
acceleration and ocean current velocity, which are
modeled as first order Gauss-Markov processes.

Gauss-Markov Process

To have more realistic vessel dynamics, the system model
includes an acceleration state, a(t), which is modeled as a
first order Gauss-Markov process driven by white noise.
In addition, the ocean current, Loran C, and speedlog
measurement errors are also modelled as Gauss-Markov

processes [6].

A Gauss-Markov process is generated by passing white
noise N(0,1)* through a linear system transfer function
(20°B)/(s+B); thus, for the continuous system, one has

*The notation N(0,1) denotes a gaussian random variable with mean value 0 and variance 1.



a(f) = -Pal) + Y207 Pw(n), with
Ew(Ow(z)] = 3t-%), T, = % is the (1

time constant (1jsec) and o* is the variance

To obtain the discrete form for equation (1), a sampling
interval A was assumed and then (1) was solved over this
interval. Since B is a constant, the state transition function
is given by

@ = Ok+10) = exp P4 (2a)

The input transition function can be determined by
calculating the mean-square response of a(t),

I = 20%p fo % fo “expPeexp P8 (u-v)dudv (2b)
= o%(1 - exp?P4)

Thus the discrete model for the Gauss-Markov process can
be written as

a(kfl) = a (k) + b w (k) 3)
where,a_ = ®, and b, =T

In equation (3), w,(k) is a zero-mean, timewise-
uncorrelated, unit-variance sequence with a Gaussian
probability distribution function. The Gauss-Markov
process, a(t), is therefore a zero-mean, exponentially-
correlated random variable whose standard deviation is o.
The constant @ can have a range of values from 0 to +1
for B 2 0. For ® — 0, a(t) changes rapidly and tends to be
uncorrelated from sample to sample. For @ —. 1 the
behaviour of a(t) becomes more sluggish and it tends to
change little from sample to sample [7].

System Model

To specify the system equations in the standard KF form,
the following states need to be defined

States to be estimated
x, = vessel x position
x, = cuwrrent velocity in x direction
x, ® vessel velocity in x direction (d4a)
x, = vessel acceleration in x direction
x, = vessel y position
x, = current velocity in y direction

x, = vessel velocity in y direction

xg = vessel acceleration in y direction
x, = Loran C error in x direction
x,, = Loran C error in y direction
x,, = Speedlog error

The continuous system equation for the KF formulation is
defined in the following standard form:

i =Fx + Gw (4b)

Therefore, with the states as defined in equation (4a), the
following state matrix, F, was derived together with the
input matrix, G, for the continuous system model specified
by equation (4b):

¢ 1 1 0 0 0 0 O 0 0 0
0-0 0 00 O0CO0 O 0 0
0 0 01 00 0 O 0 0 0
0O 0 0-g0 0 0 O0 O 0 0
0 0 00 01 1 0 0 0 0
F=(0 000000 0 0 O
0 0 00 0 0 O0 1 0 0 0
0O 000 0O O-8 0 0 O
0O 0 000 0 00 -B, O 0
0 0 0 0 0 0 0 0O o-pbo
0000000 0 0 -
0 000 0 0 O
. 000 0 0 O
0000 O O O
0O 00 0 0 O
00 00 O O O
G=/9 0, 0 0 0 O (4d)
0000 O O O
000« 0 0 O
0000, 0 O
0000 0 g, 0
0000 0 0 a

(dc)
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Loran C, and speediog, respectively.

The discrete transition matrix, P, of the state estimate
extrapolation equation then becomes

(1 Ar At AF20 0 0 0 0 0 O]
0s, 0 0 000 0 0 0 O
001 At 00O O 0 0 O
000 a 000 0 0 0O
00 0 O 1AtArAP2 O 0 O
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where a_, a, a;, and a, are defined by equation (2)
for the current, vessel, Loran C, and speedlog state
variables, respectively.

The discrete covariance structure, Q,, of the input
sequence w(k) is’calculatcd as follows:

Q, = Hutk) w(b)]
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since w(k) is a white noise vector process, we have
EHyw(w)w()T] = L 8u-v),

where I, , denotes a 7x7 identity matrix and
8(u-v) denotes the dirac delta function.

Measurement System

The measurements presently incorporated into the dead
reckoning filter consist of GPS position and velocity,
Loran C position, speedlog velocity magnitude, and vessel
bearing, i.c.,

Megsurements
z, = GPS x position
z, = GPS y position
z, = GPS x velocity with respect to ground
z, ® GPS y velocity with respect to ground (7a)
2, = Loran C x position
zg = Loran C y position
z, = Speedlog velocity magnitude
7, ® Gyroscope vessel bearing

The speedlog and gyro measurements are nonlinear
functions of the state x. The linearized measurement
matrix, H, is given by the following equations

1 0 000 0 O 0000
00 001 0 0 0000
01 100 0 O0 0000
00 0 00 1 1 0000
H=l, o ooo 0o o0 0100
0 0 0 01 0 0 OOIOUb)
0 H,H, 00 H, Hyg 0001
0 Hy, Hy, 0 0 -Hy ~Hy 0000
> FRL )
where Hy, = :x’
(,r2+x,)+(x°+x,)2
-
and Hy, = o Yo

(5 +x)* + G2z

The elements H,, and H,, describc the speedlog
measurements which require special consideration.

Speedlog Measurement

The speedlog has two modes of operation, namely,
“eround-lock" and "bottom-lock". Ground-lock occurs
when the velocity measurements are made with respect to
the ocean floor. Bottom-lock occurs when the velocity
measurements are made with respect to some depth within
the ocean. Thus, for these two modes of operation, one
has the following measurement model:

Ground-lock
zl‘l("z“;)z‘(‘l*"'r)’*xu"'a
Hy0 Hp, Hy, 0 0 Hy Hy 000 1]
where H,, = hth @
&+ 5+ (g« )
% + %

@

and H,,




Bottom-lock:
L= x:'x;ox"‘v,
H,=[oo.’rloooﬁooox}
r

where r = J;;i_'?

(7d)

The measurement matrix previously defined requires that
the dimension is adjusted dynamically depending upon
current available measurements. For instance, if all
measurements are available, one has a linearized
measurement matrix of dimensions 8x11. If GPS and
Loran C are lost, one has a dead reckoning situation,
where the speedlog and bearing measurements are used to
estimate the velocity vector in order to propagate the
vessel position estimate ahead. In this case the linearized
measurement matrix has a dimension of 2x11.

The computational sequence for the dead réckoning KFis
summarized as follows:

© At t, specify £, and P, and compute Q,, ©(1,0), k,,
H, = ﬁ and R,.
ox

= At t, compute the projected estimate of the covariance
mazrix P(1[0) = ®(1,0P,(1,0)7+Q,.

o Compute the gain marrix K, = P(1|0)H;(®(1/0)£)
(2@ 02)PU|0H(@1]0%) + R]".

o Using the measurement z, at t=t,, the best estimate of
the state at t, is given by %, = ©(i|0)%, +

K[z, - k(@|0Z)]

o The estimation covariance matrix at t,, is given by
P(1|1) = P(1]0) - K,H(®(1/0)£)P(10).

¢ At t=(,, @ new measurement z, is obtained and the
compuzational cycle is repeated.

2.2 Dead Reckoning Kalman Filter Results

The performance of the DRKF was determined by
simulating the vessel, current,and measurement kinematics
with additive Markov and white noise. The analysis was
performed on a 486 computer in an OS/2 environment
with Presentation Manager graphical user interface. The
multitasking environment of OS/2 allowed the simulator,
Kalman Filters, and ECDIS to run in parallel.

The simulator allowed the user to navigatc a vessel in
Vancouver, B.C. Harbour area by specifying position,
velocity and acceleration of the vessel. From this

kinematic information, synthetic data for the GPS,
Speedlog, Loran C, and bearing measurements were
generated. Table I summarizes the Markov vessel
acceleration and current velocity models and the
measurements noise models in five simulated tests. The
acceleration model is the same for all tests. The current
velocity model varies for each test because it had a
stronger effect on the filter performance. Table 11
summarizes the vessel kinematics that were simulated. The
time’ column specifies when the velocity and rotation rate
were initialized.

The Universal Transverse Mercator (UTM) coordinate
system (WGS-84 datum) is used, and any measurements
specified in latitude/longitude are converted to their UTM
equivalents. This is done so that the nonlinearity of
latitude and longitude are included in the system
equations. For brevity, only the UTM x coordinate
estimation data are presented.

Figure 1 illustrates the estimated and true UTM x position
time histories for the five tests and Figure 2 illustrates the
corresponding estimation error covariance. When GPS is
on, Figure 2 illustrates how the initial error decreases until
a low steady state value is reached. When GPS is not
available, the error increases to reflect the Loran C
Markov error. For both GPS and Loran C there is very
small error in the estimated x position.

The loss of GPS and Loran C reflects a dead reckoning
situation where new x position estimates are obtained by
integrating the estimated velocity vector. As is illustrated
in Figure 2, there is a steady increase in the position error
because the velocity error is propagated and integrated
ahead in time. The greatest factor affecting position error
is the magnitude of the velocity vector. Test 2, which has
the highest initial velocities, has a relatively high velocity
error which is propagated ahead in the position estimate.
Another factor which influenced the position errors was
the bearing rate. Even though Test 1 had the smallest
initial velocity vector, its error is equivalent to that of Test
S and greater than that of Test 3 and 4 because of Test 1's
higher bearing rate. This result is also evident when
comparing Tests 3 and 4.

When the speedlog is in "bottom-lock" mode, there is a
larger increase in the estimation error covariance
depending upon the magnitude of the current velocity
variance. Test 1 and 2 indicate a noticeable increase in
slope of the estimation error. Test 2 has a higher vessel
velocity vector and current velocity variance corresponding
to a greater error slope. In addition, the magnitude of the
speedlog error also results in higher estimation errors.



Table It Parameters Set for DRKE"

T [Current Measurements j
e B fors LC st |
L Imy/s s

R, R, R, |R, % |%

m |m? |m¥s [mys(m®  |mis
1|03 [0.17 [16001600[0.25 [0.25 [500 [0
2 |0.7 0.33 |BOO 800 |0.2S |0.25 {S00 |05
F IO.?.S 0.17 |800 |800 0.5 0.5 1100 |0.025
I4 ]0.0015 {0.17 [B0O 800 (0.5 [0.5 {1100 |0.0025
!ilo.l 0.125 {1600 |1600(0.5 0.5 (1100 |0.025

L-C and S-L refer to Loran C and Speedlog, respectively. B,
c=0.25 and B, = 0.5 for all tests conducted. R, to R, are

Table IL Vessel Kinematic Values”
e e e

T | Vessel Velocity Kinematics Bearing Rate
e
: Time Vxo Vyo Time deg/s
m/s m/s

1 104 50 5.0 235 4,58
2 150 10.0 10.0 220 229
3 0 6.0 6.0 0 3.44
4 0 7.0 7.0 80 4.01
5 0 -8.0 -8.0 80 1.72

= = — - == - .
“note: V,(k+1) = cos(BA)V,(K) + sin(8A)V,(k) and V,(k+1) -
cos(8A)V, (k) - sin(BA)V,(K), where 6 and A are the bearing

the error covariances on the GPS measurements. The bearing and sampling rates, respectively.
measurement error is 1 deg. and constant. The acceleration
model is defined as o, = 0.5 and B, - 1.
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Test 1 and 2 have higher speedlog Markov variance errors
than test 3, 4, and 5. In all five tests there is a noticeable
diffcrence between the true and estimated UTM x

positions.

When GPS and “ground-lock" are tummed on, the
estimation error dramatically decreases. Actually the
esumation error variances give a good parameter for
deciding how long one can continue in the dead reckoning
mode before the errors become larger than specified.

2.2 Target Tracking Kalman Filter

The target tracking Kalman filter outlined in this section
makes use of the DRKF vessel velocity and position
estimates and radar measurements in tracking a selected
radar target. A first order Gauss-Markov process is also
used in this filter for both the vessel and target
acceleration models. Since speedlog measurements are not
used in this filter, it is not necessary to have states which
estimate ocean current dynamics.

System Model

The following states are defined for TTKF
States to be estimated

x, = vessel x position

x, = vessel y position

x, = vessel velocity over ground in x direction

x, = vessel velocity over ground in y direction

x; = vessel acceleration over ground in x direction
x; = vessel acceleration over ground in y direction
X, = target x position

X, = target y position

X, = target velocity over ground in x direction
x,, = target velocity over ground in y direction
x,, = target acceleration over ground in x direction
X, = target acceleration over ground in y direction

(8a)

The input transition matrix, G, for the continuous target
tracking system is defined as
00000a 0000 0
000000000 0
“lb0o0000 0004g 0 (g
0000000000 a

where a, and «, are defined by equation
(1) for the vessel and targer, respectively.

The discrete transition matrix, @, is defined as

lOAtO%‘iOOOOOOO
oon:oAT’:oooooo
0010 At 0 000 0 0 0o
000 1 At 000 0 0 o
0000 a 00000 0 ofC(@o
000 0 a, 000 0 0 0
°=
oooooo:omo-“-zfo
oooooooxomo%‘f
000 0 O O 001 0 At 0
000 0 0 0 000 1 0 At
0000 0 00000 a4 O
0000 0 0000 0 0 g

where a, and a, are defined by equation (2) for the vessel
and target, respectively.

The discrete covariance structure, Q,, of the state input
sequence w(k) is calculated as outlined in equation (6).

Measurement System

The measurements presently incorporated into the target
tracking filter consist of the Kalman Filtered position and
velocity estimates from the DRKF and the radar range and
azimuth to the target, i.c.,

Measurements
2, = DRKF x position
z, = DRKF y position (9a)
z, = DRKF speed over ground in x direction
x, = DRKF speed over ground in y direction
z; = Radar range to target
z¢ = Radar azimuth angle to target

The linearized measurement matrix, H, is defined as

1 0 00000 O 00O O

0 1 00000 O 0000

0 0 10000 O 00O O|(9b)
H=o o0 01000 0 0000

-H, -H, 0000 H, H, 0000
-Hy Hy 0000 Hy -Hgy 00 0 0




where Hy = =) '
V& -5 e g - )
H. = G~ %)
n »
Vo -5 s (g - o) (9¢)
= - x)
Hy ~
& - x) g - x)
S (5 - x)
<

Gy = 5+ g - 2

2.3 Dead Reckoning/Target Tracking Kalman Filter

The suboptimal dead reckoning/target tracking Kalman
Filter (DRTTKF) filter, illustrated in Figure 3, is a
combination of the two previously outlined filters. The
DRTTKF consists of the eleven state DRKF serially
providing the vessel's position and velocity estimates to
the multiple twelve state TTKFs. This results in
decoupling the vessel and target kinematic states in order
to reduce computer computation. The percentage in
computational saving by using the suboptimal DRTTKF is
given by

(l_ﬂl“—"m’))xm

(11 + 6xn)’ (10)

where n = number of targets tracked

In addition to the computer computational savings, it
should also be noted that generally vessel dynamic
measurements are obtained every second while it takes
two seconds for one complete radar sweep. Thus target
positional and velocity estimates cannot cccur at the same
rate as those of the vessel and are not readily integrated
into the same system model as the DRKF.

Table IIT illustrates the target’s kinematics that were
simulated. The vessel test column corresponds to Test 1
and 3 outlined in Tables I and II. Figure 4 illustrates the
estimated and true x position values for the three test
outlined in Table IIL Figure 5 illustrates the corresponding
estimation error covariance.

The errors in vessel position and velocity estimate in the
DRKEF are fed to the TTKF measurement error covariance
matrix; thus the TTKF vessel measurements are assumed
white, gaussian, and time variant. This degrades the TTKF
filter error estimates somewhat, because elements of the
DRKF error covariance matrix are cormrelated and
nonwhite. This is evident from Figure 5. Figure 5 shows

that in the dead reckoning mode in the DRKF there is no
corresponding rise in the error estimate in the TTKF.

As outlined in the DRKF results, Figure 5 illustrates that
the higher the velocity vector and bearing rate, the greater
the error estimate. The oscillations in the error estimation
reflects the variations in the partials in the linearized
matrix, H. The slightly higher error estimates in Test 2
compared to that of Test 1 reflect the higher variance and
lower time constant in the acceleration models. The
greater fluctuation in the error in Test 1 compared to that
of Test 2 and 3 reflects the fluctuations in error of Test 1
compared to Test 3 in the DRKF results.

Figure 4 shows that the difference between the estimated

and target UTM x position values is quite small, except
when in "bottom-lock" mode.

Table III. Target Kinematic Values

Test Tgt/Ves Tgt Tet

Acceleration Velocity Bearing
Rate

T|V]| o)t Bu Vo @MV

£ e m/s | m/s | degls

t || s || m¥ 1/s

1 1 0,005 0.1 5 5 4,58

2 3 0.001 0.07 b S 4.58

3 3 0.001 0.07 10 10 6.89

"Tgt and Ves are abbreviations for the target and vessel,
respectively. The initial non-zero velocity vector oceurs at
a time of 40 secs, while the bearing rate occurs at 80 secs
from time of simulation. The white noise measurement
errors are 10 metres for range and 1 deg for bearing.



Figure 3. Schematic of TTKF Configuration
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CONCLUSIONS

A decoupled dead reckoning/target tracking Kalman Filter
has been developed and found to perform close to the
coupled system, resulting in a substantial savings of
computer computation. The cost of decoupling the system
model was a slight degradation in the target’s estimated
erTor covariance.

Further work is going into the application of radar overlay
and Kalman Filters in an ECDIS system in order that
mariner navigation is made more reliable, accurate, and
safe.
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