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Derivation of seismic cone interval velocities
utilizing forward modeling and the downhill
simplex method

Erick J. Baziw

Abstract: The seismic cone penetration test (SCPT) has proven to be a very valuable geotechnical tool in facilitating
the determination of low strain (<10–4%) in situ compression (P) and shear (S) wave velocities. The P- and S-wave ve-
locities are directly related to the soil elastic constants of Poisson’s ratio, shear modulus, bulk modulus, and Young’s
modulus. The accurate determination of P- and S-wave velocities from the recorded seismic cone time series is of par-
amount importance to the evaluation of reliable elastic constants. Furthermore, since the shear and compression wave
velocities are squared in deriving the elastic constants, small variations in the estimated velocities can cause apprecia-
ble errors. The standard techniques implemented in deriving SCPT interval velocities rely upon obtaining reference P-
and S-wave arrival times as the probe is advanced into the soil profile. By assuming a straight ray travel path from the
source to the SCPT seismic receiver and calculating the relative reference arrival time differences, interval SCPT veloc-
ities are obtained. The forward modeling – downhill simplex method (FMDSM) outlined in this paper offers distinct
advantages over conventional SCPT velocity profile estimation methods. Some of these advantages consist of the allow-
ance of ray path refraction, greater sophistication in interval velocity determination, incorporation of measurement
weights, and meaningful interval velocity accuracy estimators.

Key words: seismic cone penetration testing (SCPT), downhill simplex method (DSM), forward modeling, Fermat’s
principle, weighted least squares (l2 norm), cost function.

Résumé : L'essai de pénétration au cône sismique (SCPT) s'est révélé être une outil géotechnique très valable pour fa-
ciliter la détermination in situ des vélocités des ondes de compression (P) et de cisaillement (S) à de faibles déforma-
tions (<10–4 %). Les vélocités de l'onde P et des ondes de cisaillement S sont en relation directe avec les constantes
élastiques des sols, soit le rapport de Poisson, le module de cisaillement, le module de masse, et le module de Young.
La détermination précise des vélocités des ondes P et S en partant des enregistrements des séries temporelles de cônes
sismiques est d'une importance majeure pour l'évaluation fiable des constantes élastiques. De plus, puisque les vélocités
des ondes de cisaillement et de compression sont mises au carré dans la dérivation des constantes élastiques, de faibles
variations peuvent causer des erreurs appréciables. Les techniques standard introduites dans la dérivation des intervalles
de vitesse du SCPT reposent sur l'obtention des temps d'arrivée de référence des ondes P et S alors que la sonde est
foncée dans le profil de sol. En supposant un cheminement droit du trajet du rayon de la source au récepteur sismique
SCPT et en calculant les différences relatives de temps d'arrivée de référence, on obtient les vélocités des intervalles du
SCPT. Le modèle de projection/la méthode simplex (FMDSM) décrits dans cet article offre des avantages par rapport
aux méthodes conventionnelles d'estimation du profil de vélocité du SCPT. Certains de ces avantages comprennent la
possibilité de réfraction du trajet du rayon, une plus grande sophistication dans la détermination de la vitesse des inter-
valles, l'incorporation des poids de mesure, et des estimateurs de la vitesse des intervalles d'une précision significative.

Mots clés : essai de pénétration de cône sismique (SCPT), méthode simplex descendante (DSM), modèle de projection,
principe de Fermat, ligne des moindres carrés (l2 norme), fonction de coûts.
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Introduction

Accurate in situ P- and S-wave velocity profiles are essen-
tial in geotechnical foundation designs. These parameters are
used in both static and dynamic soil analysis where the elas-
tic constants are input variables into the models defining the
different states of deformations, such as elastic, elastoplastic,
and failure (Finn 1984). Equation [1] illustrates the relation-
ship between the elastic constants of Poisson’s ratio (ν),
shear modulus (G0), Young’s modulus (E), and bulk modu-
lus (B) with the compression wave velocity (i.e., Vp) and the
shear wave velocity (i.e., Vs).
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where ρ is the mass density of the soil. Some static soil anal-
ysis techniques include displacements from line loads (i.e.,
f(E,ν)), one dimensional consolidation settlement (i.e., f(mv)
where mv = 1/B), and soil-structure interaction problems
(i.e., f(E,v, B)). The associated methods of response in dy-
namic soil analysis are the linear method (linear elastic
model), the equivalent linear method (visco-elastic model),
and the step-by-step integration method (load history trac-
ing). All of the dynamic analysis programs require accurate
input parameters for shear modulus, bulk modulus, Young’s
modulus, and attenuation (i.e., Q value). Dynamic analysis
in geotechnical practice is intimately related to the capability
of measuring the necessary soil properties.

Another important use of estimated shear wave velocities
in geotechnical design is in the liquefaction assessment of
soils. As stated by Andrus et al. (1999), “predicting the liq-
uefaction resistance of soil is an important step in the engi-
neering design of new structures and the retrofit of existing
structures in earth-quake prone regions.” Since the shear
wave velocity is influenced by many of the variables that in-
fluence liquefaction (i.e., void ratio, soil density, confining
stress, stress history, and geologic age), it is an excellent in-
dex of liquefaction (Andrus et al. 1999).

The seismic cone has proven to be a very accurate and re-
liable tool in the determination of Vs and Vp profiles. The ad-
vantages of the seismic cone consist of excellent soil probe
coupling, a controllable source, and cost effectiveness be-
cause it is a retrievable probe. Details of the seismic cone,
the downhole test procedures, and comparisons with the
crosshole results at several sites have been described by
Campanella et al. (1986).

In general terms, the seismic cone is advanced to the
depth of interest using a hydraulic reactionary pushing force.
An important factor in SCPT is to generate clean and strong
source wavelets. In mathematically modeling the displace-
ment responses of a medium to a seismic source, Gibowicz
and Kijko (1994) identify the far-field responses as being
composed of two terms. The first response is in the direction

of the ray path, corresponding to the P-wave motion, and the
second response is in a direction perpendicular to the ray
path, corresponding to the S-wave motion. The total dis-
placement vector is written as

[2] u = uP + uS

Gibowicz and Kijko (1994) decompose the uS displace-
ment into two vectors uSV and uSH, one in a vertical plane
that contains the source and the seismic receiver, and the
other in a horizontal plane. The relationships are illustrated
in Fig. 1.

Seismic sources for engineering investigations are often
designed to generate either dominantly P- and SV-waves or
dominantly SH-waves due to the fundamentally different be-
haviour of P-, SV-, and SH-waves at a boundary (Mooney
1977). When a P- or a SV-wave strikes a boundary, four out-
going waves are generated: SV and P, reflected and transmit-
ted. In contrast, a SH wave will only generate reflected and
transmitted SH-waves, thus simplifying the recorded seismic
time series. A popular SH source is the hammer beam,
which consists of applying a hammer blow laterally to the
sides of specially designed plates fixed at the surface. The
hammer beam generates excellent polarized SH-wavelets
and it is standardly applied in reverse polarity analysis
(Baziw et al. 1989). Figure 2 illustrates a typical reversely
polarized SCPT profile with an 8th order digital bandpass
filter applied to the recorded time series.

The reverse polarity technique is the most common
method implemented in deriving SCPT interval velocity pro-
files. Generally, the first or second crossover of the reversely
polarized SH-wavelets are selected as the reference arrival
times as is illustrated in Fig. 2. The interval velocities are
obtained by calculating the relative arrival time differences
(e.g., ∆T = T2 – T1) and by assuming straight ray travel
paths from source to receiver when calculating the travel
path differences (i.e., v = ∆d/∆T , where ∆d is the relative
travel path difference and v is the SCPT interval velocity).
The reverse polarity technique can be highly susceptible to
human bias because it relies on the operator to select a sin-
gle point that defines the crossover point and subsequent in-
terval time.

Another technique utilized in deriving SCPT interval ve-
locities is based upon cross-correlating the wavelets re-
corded at consecutive depth increments (Baziw 1993a,
1993b). The value of the time shift at the maximum
crosscorrelation value is assumed to be the relative travel
time difference for the wavelet to travel the depth increment.
This technique has the following advantages over the reverse
polarity technique:

(1) Minimizes the human bias associated with visually se-
lecting a crossover point in deriving interval times, which is
required by the reverse polarity technique.

(2) Utilizes the full waveform in deriving interval travel
times as opposed to a single point.

(3) The correlation coefficient between the two wavelets
can be used as a velocity accuracy estimate. This parameter
gives the investigator an indication of the similarity between
the two wavelets being correlated and the subsequent accu-
racy of the velocity estimate.

(4) Obtains two independent velocity estimates for each
depth increment by comparing source wavelets generated by
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Fig. 1. Decomposition of the S-wave displacement vector uS into two vectors, uSV and uSH. The three vectors lie in the plane perpen-
dicular to the ray path uP, and uSV is in the vertical plane, which also contains uP. The uS angle of polarization is denoted by ε (after
Gibowics and Kijko 1994).

Fig. 2. Typical reversely polarized SCPT profile with an 8th order, zero phase bandpass filter applied to the recorded time series.



the impacts on both the right and left side of the hammer
beam.

Some other SCPT arrival time techniques include the im-
plementation of real-time Kalman filtering techniques (Baziw
and Weir-Jones 2002) and the utilization of source wavelet
angles of incidence from hodogram analysis in biaxial and
triaxial SCPT probe configurations. Hodogram analysis
(Kanasewich 1981) allows for full waveform analysis and
identification and gives a quantitative indication (i.e., correla-
tion) between X-, Y-, and Z-component SCPT time series.

From the recorded seismic cone time series, arrival times
for the S- and P-waves are determined and the correspond-
ing velocity profiles are derived. In all of the previously de-
scribed SCPT interval velocity estimation techniques, it is
mandatory that the SCPT data acquisition system utilized
does not introduce spectral smearing or phase shifting into
the recorded seismic time series as is illustrated in Fig. 3
(Baziw et al. 2000). This phenomenon may occur if the am-
bient background noise contains frequency components that
exceed the seismic sensor’s frequency response limitations.

All of the previously described SCPT interval velocity es-
timation techniques derive deterministic arrival times and as-
sume straight ray paths between source and receiver. They
do not allow for the incorporation of several varying input
measurement parameters (eg., crossover times, maximum
crosscorrelation time shift, angles of incidence, and P-, S-
wave arrival time separation) in estimating interval veloci-
ties. In addition, it is difficult to include measurement reli-
ability and (or) accuracy weights into the interval velocity
estimation algorithms; there are a limited number of re-
corded waveforms that can be used in the velocity estima-
tion, a reliable indication of the accuracy of the estimated
SCPT interval velocity profile is lacking, and the straight ray
path assumption may result in inaccurate interval velocity
estimates. The forward modeling – downhill simplex method
(FMDSM) outlined in this paper attempts to address some of
these limitations.

The FMDSM for SCPT interval velocity
estimation

The FMDSM algorithm presented in this section attempts
to provide more intelligence in SCPT interval velocity esti-
mations compared to the established techniques previously
described. Some of the advantages of the FMDSM are as
follows:

(1) The refraction of ray path at layer boundaries is con-
sidered using Snell’s law.

(2) Extensive SCPT time series measurement information
(e.g., arrival times, crosscorrelation time shifts, P-, S-wave
time separation, and angles of incidence) is taken into ac-
count within an optimizes nonlinear cost function.

(3) The measurement weights are specified.
(4) Up to five independent seismic traces acquired from

adjacent depth increments are used when deriving one inter-
val velocity.

(5) There is the possibility of unlimited input data (e.g.,
crossover point arrival times, maximum crosscorrelation
time shifts, angles of incidence, and P-, S-wave time separa-
tions) into the interval velocity estimation algorithm.

(6) It allows for variable interval velocity estimates so that
comparisons or correlations can be made with other types of
in situ measurements.

(7) It provides accurate interpolation of interval velocities
when data is not available.

(8) Meaningful error residuals can be determined for the
evaluation of the accuracy of the estimated interval velocity.

Downhill simplex method in multidimensions

The downhill simplex method (DSM) is an iterative
minimization technique originally developed by Nelder and
Mead (1965). The DSM in multidimensions has the impor-
tant property of not requiring derivatives of function evalua-
tions and it can minimize nonlinear functions of more than
one independent variable. Although it is not the most effi-
cient optimization procedure, the DSM is versatile, robust,
and simple to implement. The DSM has been used in a vari-
ety of scientific applications such as obtaining seismic
source locations in the mining and oil and gas industries
(Vance et al. 1988; Gibowicz and Kijko 1994).

A simplex defines the most elementary geometric figure
of a given dimension: a line in one dimension, the triangle in
two dimensions, the tetrahedron in three, etc; therefore, in an
N-dimensional space, the simplex is a geometric figure that
consists of N + 1 fully interconnected vertices. For example,
in determining the location of a seismic event, a three-
dimensional space is searched, so the simplex is a tetrahe-
dron with four vertices as illustrated in Fig. 4. The DSM
starts at the N + 1 vertices that form the initial simplex. The
initial simplex vertices are chosen so that the simplex occu-
pies a good portion of the solution space. In addition, it is
also required that a scalar cost function (e.g., root mean
square (RMS) difference between synthetic and actual seis-
mic receiver arrival times and crosscorrelation time shifts)
be specified at each vertex of the simplex.

The general idea of the minimization is to keep the mini-
mum within the simplex during the optimization; at the same
time decreasing the volume of the simplex. The DSM
searches for the minimum of the costs function by taking a
series of steps, each time moving a point in the simplex
away from where the cost function is largest. As illustrated
in Fig. 4 for the tetrahedron, the simplex moves in space by
variously reflecting, expanding, contracting, or shrinking.
The simplex size is continuously changed and mostly dimin-
ished, so that finally it is small enough to contain the mini-
mum with the desired accuracy.

The DSM incorporates the following basic steps (Vance et
al. 1988):

(1) Specify initial simplex vertices.
(2) Specify the cost function at each vertex of the simplex.
(3) Compare the cost function for each vertex and determine

the lowest error “best” and highest error “worst” vertices.
(4) In sequence, locating reflected, then if necessary, ex-

panded, then if necessary, contracted vertices, and calculat-
ing for each the corresponding cost function and comparing
it to the worst vertex; if at any step the cost function of the
new trial point is less than the value at the worst vertex; then
this vertex is substituted as a vertex in place of the current
worst vertex.
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(5) If the process in step (4) does not yield a lower error
value than the previous worst, then the other vertices are
shrunken towards the best vertex.

(6) At each stage of shrinking, the distances between ver-
tices are calculated and compared to a set tolerance (i.e.,
VertexTolerance variable in the FMDSM algorithm) value to
check if the simplex has become sufficiently small for termi-

nation of the estimation; when the test criterion is reached,
the previous best vertex becomes the solution.

(7) At each stage of shrinking, the cost function values at
the vertices is compared to a set minimum (i.e.,
CostMinimum variable in the FMDSM algorithm) value to
check if the error residual has become sufficiently small for
termination of the estimation; when the test criterion is
reached, the previous best vertex becomes the solution.

For the FMDSM algorithm a three-dimensional space is
specified, so the simplex is a tetrahedron with four vertices.
The FMDSM three-dimensional space consists of three con-
current interval velocities (v1, v2, v3) to be estimated. For
simplicity, the cost function presented in this paper is de-
fined as the weighted least squares (l2 norm) error residual
between synthetic and measured arrival times and between
synthetic and measured crosscorrelation time shifts for re-
corded S- and P-waves. More elaborate cost functions,
which include the weighted least squares residuals between
synthetic angles of incidence, crossover times, P-, S-wave
time separations and those measured, may also be used.

The three-dimensional space was selected so that the com-
putational burden was minimized for each FMDSM estima-
tion and so that the complexity of the specification of the
initial simplex vertices was reduced. A detailed description
of the FMDSM will be provided in a later section.

Forward modelling with Chander’s ray
tracing technique

As previously described, the DSM requires a cost function
to be calculated and minimized while the simplex moves in
space by variously reflecting, expanding, contracting, or
shrinking. The cost function is derived from the difference
between recorded SCPT P- or S-wave arrival and cross-
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Fig. 3. SCPT data illustrating the time series corrupting effects of spectral smearing and phase shifting.

Fig. 4. Initial tetrahedron simplex with possible operations on
simplex vertices.



correlation times and those calculated from forward model-
ing utilizing Chander’s ray tracing technique. The FMDSM

scalar cost function J for the vertices of the simplex (i.e., i =
1–4) is defined as follows:

© 2002 NRC Canada

1186 Can. Geotech. J. Vol. 39, 2002

Fig. 5. Refraction of source wavelet as it travels from source to receiver.

Fig. 6. Example of specification of typical SCPT geometry of stratigraphic profile and probe locations.
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where N defines the number of recorded seismic rays that
travel through the three stratigraphic layers (v1, v2, and v3) to
be estimated, tAm is the measured seismic wave arrival time
with wA representing the weight or accuracy in the range of
0–1, tCCm is the measured crosscorrelation time shift with
wCC representing the correlation coefficient or accuracy in
the range of 0–1, and tAs and tCCs define the synthetic arrival
time and crosscorrelation time shift, respectively, derived
through forward modeling with Chander’s ray tracing tech-
nique.

In SCPT the source wavelet travels through the strati-
graphic profile and is refracted at layer boundaries. The ge-
ometry of the various reflected and refracted waves related
to the incident wave is directly analogous to light and can be
described, using Snell’s law of refraction as

[4]
sin sinθ θ1

1

2

2v v
p= =

where θ1 and θ2 are the angles of incidence and refraction,
respectively, v1 and v2 are the speeds of propagation in lay-
ers 1 and 2, respectively, and the quantity p is called the ray
path parameter.

Fermat’s principle states that a wave will take that ray
path for which the travel time is stationary with respect to
minor variations of the ray path. Chander (1977) utilizes
Fermat’s principle in deriving the governing equations that
allow for seismic ray tracing from the source to the receiver.
The following brief description for three-dimensional ray
tracing through arbitrarily dipping interfaces in the velocity
model is given in detail by Chander. In Fig. 5, V1 to Vn + 1
represent the consecutive vertices of the seismic ray as it
travels from the source to the SCPT receiver. V1 identifies
the source Cartesian coordinates (x1, y1, z1) while Vn + 1 iden-
tifies the SCPT receiver Cartesian coordinates (xn + 1, yn + 1,
zn + 1). It is required to trace the ray by determining the Car-
tesian coordinates of the vertices V2 to Vn by implementing
Fermat’s principle and with the following data specified:

(1) The initial source and receiver Cartesian coordinates.
(2) The Cartesian plane interface equations where the ver-

tices V2 to Vn lie

[5] Ai x + Bi y + Ci z + Di = 0 i = 2, � , n

where the parameters Ai, Bi, and Ci define the normal to the
interface plane and parameter Di is derived by specifying a
point on the plane.

(3) The interval velocities, vi, i = 2, �, n + 1. This num-
bering convention for the algorithm implementation is subtly
different from that illustrated in Fig. 5 so that it is easier to
define and implement the necessary ray tracing governing
equations. In the governing equations to follow, vi is the con-
stant velocity between interfaces i – 1 and i, i.e., along the
segment of the ray between vertices Vi – 1 and Vi, v2 is the
velocity between the source and V2, and vn + 1 is the velocity
between the SCPT receiver and vertex Vn.

Chander’s ray tracing governing equations

Fermat’s principle of least time states that a wave will
take the ray path for which the travel time is stationary with
respect to minor variations of the ray path, that is, the
change in travel time for an incremental change in ray path
is zero (Sheriff and Geldart 1982). This principle leads to
the condition that the ray path travels along the trajectory
that requires minimum time between points. The travel time
t along the ray V1 to Vn + 1 is given by the sum
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Utilizing eq. [5], the travel time t may be expressed in
terms of the x and y coordinates. To adhere to the require-
ment of Fermat’s principle, the partial derivatives of t with
respect to xi and yi are taken and set to zero as follows:
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The solution to the ray tracing problem is satisfied if the
2n – 2 equations defined by eq. [7] hold simultaneously.
Chander implements the multidimensional Newton-Raphson
iteration technique to solve eq. [7]. The Newton-Raphson
technique requires that initial vertices V2 to Vn be specified
that are iteratively updated so that eq. [7] holds. For the
FMDSM, straight ray paths are assumed between source and
receivers when specifying the initial vertices.
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Fig. 7. Solution space for tetrahedron simplex.



FMDSM proposed algorithm

The first step in implementing the FMDSM for deriving
SCPT interval velocities is to specify the geometry of the
stratigraphic profile under investigation. For example, in a
typical SCPT the seismic cone data is acquired at depth inter-
vals of 0.5–1 m as illustrated in Fig. 6. In Fig. 6 seismic data
is obtained at 1 m intervals starting at 0.5 m down to a depth
of 9.5 m resulting in a total of ten measurements. It is possi-
ble to have a greater amount of seismic data available within
the profile estimated, but for simplicity one trace is assumed
for each metre SCPT probe increment. The problem is to esti-
mate the stratigraphic velocity intervals v1 to v10 based upon
the available seismic data. The Cartesian plane interfaces de-
fined by eq. [5] have normals pointing along the z axis and
are defined as Ai = 0, Bi = 0, Ci = 1, for i = 0–9. Di is defined
as the depth of the interface so that Di = 0, 1,�, 9, for i = 0–
9, respectively.

The FMDSM recursively estimates the stratigraphic veloc-
ity intervals from v1 to vn by deriving three independent ve-
locity estimates for each iteration. When the algorithm is

running, the first three stratigraphic interval velocities are
estimated (i.e., v1, v2, v3), then the stratigraphic interval is
incremented by one and interval velocities v2, v3, and v4 are
estimated. This process is repeated until the last stratigraphic
interval velocity to be estimated is reached. This algorithm im-
plies that estimates of interval velocity vi for i ≥3 will be deter-
mined three times (e.g., (v1, v2, v3), (v2, v3, v4), (v3, v4, v5))
utilizing measurements acquired at five corresponding depth
increments (e.g., v1, v2, v3, v4, v5).

Once the geometry of the stratigraphic profile under in-
vestigations has been specified, the FMDSM implements the
following steps:

(1) Specify vertices of initial tetrahedron. The FMDSM
has a three-dimensional space defined as the possible values
for the v1, v2, and v3 interval velocities to be estimated. The
interval velocities have the desirable property of being con-
fined in the first quadrant of v1–v2–v3 space (i.e., v1 > 0, v2 >
0, and v3 > 0). In addition, we are assured that the interval P-
and S-wave velocities lie in with certain minimum and maxi-
mum values; therefore the initial tetrahedron is specified so
that it occupies a good portion of the solution space. The
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Fig. 9. Specification of a ten layer variable velocity interval stratigraphic profile for testing the performance of the FMDSM.

Fig. 10. Specification of a seven layer variable velocity interval stratigraphic profile for comparing the performance of the FMDSM
with the standard straight ray interval velocity estimate.



cube illustrated in Fig. 7 shows the solution space cube for
the v1–v2–v3 coordinate system where vhigh and vlow define
the possible maximum and minimum interval velocities, re-
spectively, for the wavelet under study (i.e., P- or S-wave).

The FMDSM algorithm is very robust and obtains an opti-
mal solution for very generic specifications of vhigh and vlow.
For example, setting vhigh equal to the maximum possible
shear or compression wave velocity in unconsolidated soils
and vlow equal to zero is sufficient. The initial simplex tetra-
hedron illustrated in Fig. 7 has the following vertices speci-
fied:

V01 = (vhigh, vhigh, vhigh), V02 = (vlow, vlow, vlow), V03 = (vhigh,
vhigh, vlow), and V04 = (vlow, vhigh, vlow).

(2) Utilizing forward modeling with Chander’s ray tracing
technique, synthesize measurements (e.g., P-, S-wave arrival
times, incremental relative arrival times, incident angles, and
P-, S-wave arrival time separations). Derive scalar cost func-
tion value based upon weighted least squares at each initial
vertex.

(3) Implement previously outlined DSM steps (3)–(7).
(4) Repeat steps (1)–(3) until all interval velocities have

been estimated.
Figure 8 illustrates a process flow diagram of the FMDSM.

FMDSM performance evaluation

As is standard practice in new mathematical algorithm
designs, the previously outlined FMDSM formulation was
extensively evaluated by processing synthetic data. Fig-
ure 9 illustrates a ten layer stratigraphic profile with vary-
ing interval velocities. Low and high medium velocities
have been introduced within the profile so that there is sig-
nificant seismic wave refraction and the forward modeling
portion of the FMDSM could be assessed. The FMDSM pa-
rameters set for this test case were vhigh = 600 m/s, vlow =
0 m/s, VertexTolerance = 1.0 × 10–8, and CostMinimum =
1.0 × 10–8. The variables VertexTolerance and CostMinimum
were previously defined in items (6) and (7) of the DSM
outline.

After synthesizing seismic wave arrival times based upon
the stratigraphic profile illustrated in Fig. 9, the arrival times
were fed into the FMDSM, and subsequent interval veloci-
ties and ray paths were estimated. The FMDSM exactly re-
covered the true interval velocities and provided the source
receiver ray paths illustrated in Fig. 9. Upon close examina-
tion, it is found that the estimated ray paths adhered to
Snell’s law at the interface boundaries.

The ability of the FMDSM to improve upon the straight
ray interval velocity estimate depends on several SCPT site
parameters such as seismic cone – source offset, depth of in-
terval velocity estimate, and variability of the in situ velocity
profile to be estimated. Figure 10 illustrates a simulated
SCPT were the seismic source is radially offset from the
seismic probe by 2.1 m, the seismic data capture starts at
1.5 m and goes to a depth of 7.5 m at 1 m intervals.

Table 1 outlines the variable interval velocities and the in-
terval velocity estimates from the FMDSM with compari-
sons made to the industry standard of assuming straight ray
seismic wave propagation. An example of the calculation of
the straight ray propagation interval velocity estimate is il-
lustrated in Fig. 6 where v2 = (d2 – d1)/(t2 – t1). As shown in
Table 1, the FMDSM exactly recovered the true interval ve-
locities and provided the source receiver ray paths illustrated
in Fig. 10. The straight ray interval velocity estimates did a
poor job in estimating the true interval velocity estimates be-
cause the site parameters specified were not conducive to a
straight ray assumption defined by vi = (di – di – 1)/(ti – ti – 1).

If there is not significant ray path refraction present in a
seismic cone profile, the FMDSM may also be utilized to
determine variable interval velocities for the same time se-
ries information. For example, if we are interested in 1 m in-
crement interval velocities starting at a depth of 1.5 m for
the traces illustrated in Fig. 9, we obtain the interval veloci-
ties illustrated in Table 2. This feature may be of use when
correlating SCPT results with other types of in situ measure-
ments.

The FMDSM was next tested for its ability to estimate an
interval velocity when no measurement data (e.g., arrival
time) for the stratigraphic layer under study is available.
This leads to an underdetermined situation where we have
more unknowns (e.g., interval velocities) than knowns (i.e.,
arrival time measurements). For example, consider the strati-
graphic profile illustrated in Fig. 11. The interval velocities
v1, v2, and, v3 are estimated when only two interval measure-
ments t1 and t2 are available. Table 3 shows the possible
measurement combinations for the layers shown in Fig. 11
when only two measurements are available.

In Table 3, test case 1 results in a situation where there
are several combinations of v1, v2, and v3 that would give
low or zero residual errors for the t1 and t2 measurements at
layers 1, 2, and 3. In test case 2, we would obtain an accu-
rate v1 estimate, but again there would be several different
combinations (e.g., average (i.e., v2 = v3), v2 low and v3 high,
or v2 low and v3 high) of v2 and v3 to give a low error resid-
ual for the t2 measurement. Test case 3 results in the situa-
tion where we have accurate estimates for v1 and v2, but
nonsensical estimates for v3 because there are no measure-
ments available in this layer so that an error residual can be
calculated.

As an example of the above analysis, consider the case
where we have interval velocities v1 = 80 m/s, v2 = 220 m/s,
and v3 = 100 m/s. Table 4 illustrates the FMDSM estimation
results when two measurement arrival times have been syn-
thesized for test cases 1 to 3 in Table 3. As is illustrated in
Table 4, we have averaged estimates for v1, v2, and v3 for test
case 1. In test case 2, the FMDSM gives an accurate esti-
mate for v1 and approximate estimates for v2 and v3. In test
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Fig. 11. Three layer stratigraphic profile.



case 3, we have accurate estimates for v1 and v2, but a non-
sensical estimate for v3.

To constrain v1 and v3 (i.e., assume known) and utilize ar-
rival time measurements at layers 1 and 3, the estimation
problem is no longer underdetermined and an accurate esti-
mate for v2 can be made. The approach in the FMDSM for
deriving an interval velocity from a layer where no measure-
ment data is available is outlined as follows:

(1) Process available measurements and obtain accurate
interval velocity estimates for layers where measurement
data is available.

(2) Constrain medium velocities of boundary layers of in-
terval vnoData that do not have measurements available.

(3) Use the measurements available at boundary layers
and obtain an interval velocity estimate for vnoData.

The performance of the above steps (1)–(3) is demon-
strated by reprocessing the profile illustrated in Fig. 9. To
simulate the effect of no measurement data the measurement
weight for the arrival time occurring in stratigraphic interval
six of Fig. 9 is set to zero. In this test the modified FMDSM

algorithm gives exact interval velocity estimates for the
layer that has arrival time measurement data available. The
estimate for layer six in this first run is 202 m/s instead of
220 m/s. The FMDSM algorithm is again executed with the
above steps (1)–(3) implemented. In this case, the algorithm
gives the exact interval estimate of 220 m/s.

It is not required to constraint the boundary interval veloc-
ities if greater measurement information were available,
such as source wavelet incident angles derived from biaxial
or triaxial SCPT probes. In this case, the calculated cost
function is sufficiently constrained that a unique velocity es-
timate can be obtained at a stratigraphic layer where mea-
surement data is not available.

Conclusions

Seismic cone penetration testing is a very valuable
geotechnical tool in obtaining vertical profiles of P- and S-
wave velocities that are directly related to the elastic proper-
ties of soil. SCPT is a desirable methodology for obtaining
in situ seismic velocities due to the excellent sensor and soil
coupling and simplicity of source wavelet generation. The
accurate determination of P- and S-wave velocities from the
recorded seismic cone time series is of paramount impor-
tance to the evaluation of reliable elastic constants. Further-
more, since the shear and compression wave velocities are
squared in deriving the elastic constants, small variations in
the estimated velocities can cause appreciable errors. This
paper presented an algorithm, FMDSM, that offered several
advantages over conventional estimation techniques when
deriving SCPT interval velocity profiles.

Some of the benefits over conventional techniques pro-
vided by the FMDSM consist of utilization of Snell’s law at
layer boundaries for ray path refraction; optimization of a
nonlinear cost function that takes into account more detail of
the SCPT testing environment and subsequent seismic data
recorded compared to standard techniques; allowance for
measurement weights to be specified; the possibility to in-
corporate unlimited input data (e.g., crossover point arrival
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Interval
depth (m)

Arrival
time (ms)

True interval
velocities (m/s)

FMDSM interval
velocity estimate (m/s)

Straight ray interval
velocity estimate (m/s)

0–1.5 22.9795 112 112 112
1.5–2.5 24.2555 181 181 536
2.5–3.5 27.3112 209 209 267
3.5–4.5 36.96 101 101 94
4.5–5.5 40.7033 214 214 246
5.5–6.5 44.537 232 232 246
6.5–7.5 55.12 128 128 126

Table 1. Comparing interval velocities (rounded off to the nearest integer) derived from the FMDSM
and those obtained from the straight ray assumption.

Interval depth (m) FMDSM estimate (m/s)

0–1.5 86
1.5–2.5 124
2.5–3.5 149
3.5–4.5 102
4.5–5.5 118
5.5–6.5 138
6.5–7.5 128
7.5–8.5 213
8.5–9.5 198

Table 2. Interval velocity (rounded off to the nearest
integer) estimates from the FMDSM for a 0.5 m in-
terval offset.

Case v1 v2 v3

1 105 108 104
2 80 212 104
3 80 220 67

Table 4. FMDSM estimation results for
the cases outlined in Table 3.

Case v1 v2 v3

1 NA A A
2 A NA A
3 A A NA

Note: The letter A indicates that a measurement is
available for the identified interval velocity, while
NA denotes that no measurements are available for
the associated interval velocity.

Table 3. Possible measurement combinations
for the underdetermined estimation problem.
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times, maximum crosscorrelation time shifts, angles of inci-
dence, and P-, S-wave time separations) into the interval ve-
locity estimation algorithm; the ability to accurately
interpolate interval velocities when measurement data is not
available; and it provides meaningful error residuals that in-
dicate the accuracy of the estimated interval velocity.

The performance of the FMDSM is assessed by process-
ing synthesized data, where very encouraging results are ob-
tained. The ability of the FMDSM to improve upon the
straight ray interval velocity estimate depends on several
SCPT site parameters such as seismic cone – source offset,
depth of interval velocity estimate, and variability of the in
situ velocity to be estimated. It has been demonstrated that
depending upon the values of the previously described vari-
ables, the FMDSM can provide substantially more accurate
interval velocity estimates than the straight ray assumption,
and the FMDSM may also be utilized to determine variable
interval velocity estimates so that comparisons or correla-
tions can be made with other types of in situ measurements.
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