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Application of Kalman Filtering Techniques
for Microseismic Event Detection

Erick Baziw! and IAIN WEIR-JONES!

Abstract— Microseismic monitoring systems are generally installed in areas of induced seismicity
caused by human activity. Induced seismicity results from changes in the state of stress which may occur as
a result of excavation within the rock mass in mining (i.e., rockbursts), and changes in hydrostatic
pressures and rock temperatures (e.g., during fluid injection or extraction) in oil exploitation, dam
construction or fluid disposal. Microseismic monitoring systems determine event locations and important
source parameters such as attenuation, seismic moment, source radius, static stress drop, peak particle
velocity and seismic energy. An essential part of the operation of a microseismic monitoring system is the
reliable detection of microseismic events. In the absence of reliable, automated picking techniques,
operators rely upon manual picking. This is time-consuming, costly and, in the presence of background
noise, very prone to error. The techniques described in this paper not only permit the reliable identification
of events in cluttered signal environments they have also enabled the authors to develop reliable automated
event picking procedures. This opens the way to use microseismic monitoring as a cost-effective
production/operations procedure. It has been the experience of the authors that in certain noisy
environments, the seismic monitoring system may trigger on and subsequently acquire substantial
quantities of erroneous data, due to the high energy content of the ambient noise. Digital filtering
techniques need to be applied on the microseismic data so that the ambient noise is removed and event
detection simplified. The monitoring of seismic acoustic emissions is a continuous, real-time process and it
is desirable to implement digital filters which can also be designed in the time domain and in real-time such
as the Kalman Filter. This paper presents a real-time Kalman Filter which removes the statistically
describable background noise from the recorded seismic traces.

Key words: Microseismic monitoring, Kalman Filter, state-space, automated event detection, ambient
noise.

1. Introduction

Microseismic monitoring systems are used in mining rock mechanics, civil
construction, petroleum extraction, and heavy structural engineering. Extreme
examples of energy release can cause violent rockbursts which result in fatalities and
injuries among underground personnel and damage to mine structures (e.g., drifts,
stopes, shafts, etc.). Microseismic systems are capable of detecting rock failures in the
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vicinity of underground excavations caused by the sudden release of strain energy
resulting from the redistribution of stresses around openings.

Various hydrocarbon production sites also benefit from seismic monitoring
systems during certain phases of production. Primary or secondary extraction or the
injection of material into the reservoir to enhance production can cause significant
stress changes. These stress changes can result in failures of the overlying strata and
the migration of hydrocarbons to aquifers or to the ground surface. Thus
microseismic monitoring can be used to satisfy environmental concerns, meet
regulatory requirements and assess the development of induced fracturing within the
reservoir. In addition, the microseismic monitoring systems have been successful in
identifying and locating casing failures due to steam stimulation in oil sands (TALEBI
et al., 1998).

During filling of hydroelectric or large irrigation reservoirs, changes in regional
loading and pore pressures cause significant stress variations within the surrounding
rock mass. These can induce a wide range of micro- and macroseismic events, some
of which are capable of causing damage to adjacent structures or to the dam itself.
Microseismic monitoring can locate and characterize these potentially hazardous
induced events.

Irrespective of the cause of microseismic events, their reliable detection and
placement on a common time base is of critical importance. This is because the
arrival times of wavelets at various detector packages within a three-dimensional
array provide the basis for the calculation of the location of the microseismic event.
Imprecision or uncertainty in arrival time determination reduces the precision of the
source location operation. In many microseismic monitoring situations — for example
where there is interest in the behaviour of specific geological features or where events
must be related to specific structures in a mining or hydrocarbon extraction
environment — the accurate determination of event arrival times is the primary
rationale for the installation of the system. Hence, techniques such as the one
described in this paper open the way for the more widespread use of microseismic
monitoring in a number of industrial applications.

The environmental and seismic models used in this paper are designed to fit into a
Kalman Filter (KF) formulation. The Kalman Filter is an optimal (in a least-squares
sense) recursive filter which is based on state-space, time-domain formulation of
physical problems, thereby avoiding difficulties commonly associated with frequency
domain filters (BAziw, 1993), and which is ideal for real-time applications. The KF
requires that the physical problem be modelled by a set of first-order differential
equations which, with initial conditions, uniquely define the system behaviour. The
filter utilizes a knowledge of system and measurement errors and statistical
information about the initial conditions (BAziw, 1988). Section 2 presents the KF
microseismic event detection formulation.

The performance of the KF presented in this paper was first evaluated by
generating synthetic source wavelets which have correlated earth noise added.
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Section 3 presents results from the seismic data simulation and processed real data
obtained from a heavy oil extraction facility in Northern Canada.

2. Kalman Filter Formulation

The Kalman Filter is an optimal (least-squares) recursive filter which is based on
state-space, time-domain formulations of physical problems. Application of this filter
requires that the physical problem be modified by a set of first-order differential
equations which, with initial conditions, uniquely define the system behaviour. The
filter utilizes knowledge of system and measurement dynamics, assumed statistics of
system noises and measurement errors and statistical information regarding the
initial conditions. Figure 1 illustrates the essential relation between the system, the
measurements and the Kalman Filter.

Figure 1 indicates the scope of information the KF takes into account. As can be
seen, the statistics of the measurement and state errors are essential components of
the filter. The a priori information provides for optimal use of any number,
combination and sequence of external measurements. The KF can be applied to
problems with linear time-varying systems and with non-stationary system and
measurement statistics. Problems with nonlinearities can be handled by linearizing
the system and measurement equations. The Kalman Filter is readily applied to
estimation, smoothing and prediction.

From the published technical literature, it seems that geophysical data processing
has been primarily carried out by the application of frequency domain and steady-
state filters such as the Weiner Filter (KANASEWICH, 1981). These filters put many
restrictions on the structure of the problem. In general, one assumes non-time-
varying system equations (where the coefficients of the system differential equation
are constant), and statistically stationary error processes (GELB, 1978).

If the geophysical problem can be structured into one susceptible to the
application of the Kalman Filter, it is possible that better state and system

System Measurement A priori
Error Sources Error Sources Statistics
System Observations
State Estimates of
x(® () Kalman System State » X0
System Measurement f——— > Filter ‘ P(t)

x(6) Covariance of

x(t) A E System State

P(t) Estimate
Figure 1

Block diagram of system, measurement, and Kalman Filter.
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parameters would be obtained as compared to those derived from use of the
frequency domain and steady-state filters. In addition, the KF is ideally suited for
real-time optimal data filtering in situations where each new measurement provides
for an updated state estimate. This feature of the KF is particularly useful for
microseismic event detection. Another advantage of a Kalman Filter is that it allows
one to use “‘state noise” to compensate for errors in the mathematical model. The use
of state noise causes the filter to apply less weight to measurements made in the
distant past, and to apply more weight to state vector estimates based on more recent
measurement data.

BAYLESS and BRIGHAM (1970) were among the first researchers to fit geophysical
problems into the Kalman Filter formulation. In addition, MENDEL (1983, 1995) has
carried out extensive work in fitting geophysical problems into state-space represen-
tations.

2.1 Standard Kalman Filter Governing Equations

The KF is a method for estimating a state vector x from measurement z . The
state vector may be corrupted by a noise vector w and the measurement vector is
corrupted by a noise vector v . The KF filter is applicable for systems that can be
described by a first-order differential equation in x and a linear (matrix) equation in
z. The KF can be described in both continuous and discrete form. The continuous
state and measurement equations are given by

(1) = F(0)x(1) + G()w(2) (1)
z(t) = H(1)x(t) + v(2) 2)

where X is an n-vector, w is a p-vector, and z and v are m-vectors.
The random (vector) processes w and v are assumed to be zero mean, white noise
processes, so that

Ew(t)] =0 and E[v(r)] =0,
Ew(yw(®) | = 0)3(1 - ), 3)
E [g(z)g(r)ﬂ — R(1)0(¢ — 7).

It is further assumed that w and v are statistically independent of each other, so that

E[w(e(@)'] =0 @

In the above equations the superscript 7' denotes the vector transpose, the E denotes
the expected value operation and 6(¢ — 1) is the Dirac delta function.

We use the notation x(#|¢) to denote an estimate of the state at a time #,# > #,
based on measurements z(t) on the interval £y < t < ¢. It is convenient to make the
following definitions:
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Definition:
1 If 7 > t,x(¢)¢) is a predicted estimate.
2. If ¢ = t,%(¢|¢) is a filtered estimate.
3.IF ¢ < 1, %(7|¢) is a smoothed estimate.
The estimation error is defined as

x(f']t) = x() — 2(('|t) (5a)

and the performance index of the estimation is given by
15(10)) = E[5( (1) (sb)

The estimation problem can now be stated as follows:

Estimation Problem: Given the system defined by egs. (1) and (2) with statistics
defined by (3) and (4), and measurements z(t) over the interval ¢y < 7 < ¢, determine
an estimate of £(¢|¢) such that I[x(¢|¢)] is minimized.

The solution to this problem is specified by the following equations for the filtered
estimate:

State Estimation equation

k(1) = FOR(1) + K(0)[z(t) — H(0(0), (6)
with
(1) = %
given
Kalman Gain matrix
K(t)=P()H(t)'R()™ (7)

Estimation Error Covariance (Matrix Ricatti) equation
P(1) = F())P(1) + P()F(1)" + G()Q(1)G())" — K()R(DK(1)", (8)

with
P(l()) = P()

given.
The error covariance matrix is a positive semi-definite symmetric matrix. A block
diagram of the system, measurement and filtered estimates is shown in Figure 1.
Using the notation of GELB (1978), the corresponding discrete state and
measurement equations are given by

Xp=DQr1x i Fwio1, wir =N, 0Ok) )
Zy =Hpxp +vp 0 & N(O,Ry). (10)
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In egs. (9) and (10), symbol N denotes a normal distribution with mean 0 and
variance Oy and Ry, respectively. The discrete Kalman Filter estimation equations are
outlined as follows:

State Estimate Extrapolation:

(=) = DX () (11)

Error Covariance Extrapolation:

Pi(=) = Q1 Pt (H)D_ + Ok (12)
State Estimate Update:
5(+) = 2(=) + K[z — Hixi (-] (13)
Error Covariance Update:
P(+) = [[ — KiHi ] Pe(—). (14)

I is the identity matrix in eq. (14).
Kalman Gain Matrix:

-1
Ky = Po(—)H! [HP(—)H] + Ry]

Initial Conditions:
Elw) =2, E|(xo—50)(x — %)"| = P (16)

The computational sequence for the discrete KF is outlined as follows:

A. At time index £ = 0, specify initial conditions %,, and Py, and compute @y and Q.

B. At time index k = 1, compute £,(—), Pi(—), Hi, R, and the gain matrix K,

C. Using the measurement z; at time index £ = 1, the best estimate of the state at
k =1 is given by

£1(+) =%1(—) + Ki[z1 — Hi%1(—)]

D. Update the error covariance matrix Pj(+)
E. At time index k = 2, a new measurement z, is obtained and the computational
cycle is repeated.

2.2 Microseismic Event Detection Kalman Filter

As was stated previously, the most important factor when applying the KF is
that the physical problem must be modelled/approximated by a set of first-order
differential equations. In addition, the statistical properties of the system and
measurements need to be modelled such that they can be completely specified by first-
and second-order statistics (i.e., expected values and covariances).
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The microseismic seismic time series is typically comprised of ambient noise and
seismic P waves and S waves. The first step in defining the Microseismic Event
Detection Kalman Filter (MEDKF) is to provide a mathematical description of the
ambient background noise.

2.2.1 MEDKF ambient noise model

The authors calculated the autocorrelation and power spectrum of a large
number of microseismic ambient noise time series. From these results, it was possible
to identify a mathematical model which sufficiently fits the seismic noise processes.
Figure 2 illustrates the autocorrelation function and power spectral density of

Process Autocorrelation Function ( ¢yy)| Power Spectral Density ( @)
White
Noise o
T )
dxx(t) = $ed(7) Dy =,
Markov 20%/P
T ®
Gxx(t) = 0P Dy = 2P0%(wHB?)
A%2
Sinusoid t
)
-0, ®,
— 2
bxx(1) = (A¥2)cosw;T @ ~(2)AB(0-0,) + de+e,)]
m2
Random Bias
T ! )
Pyx(t) =m’ D, =27m’d(w)
Figure 2

Descriptions of Common Random Processes (GELB, 1978).
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common random processes (GELB, 1978). A Gauss-Markov process can be used to
describe many physical phenomena (Baziw, 1994) and is a good candidate to model
the microseismic environmental noise.

The Gauss-Markov Process has a relatively simple mathematical description. As
in the case of all stationary Gaussian processes, specification of the process
autocorrelation completely defines the process. The variance, ¢?, and time constant,
T. (i.e., f =1/T,), define the first-order Gauss-Markov process. These parameters
can be derived from the seismic time series by windowing on the noise portion of the
trace and calculating the autocorrelation of the ambient noises. A Gauss-Markov
process, n(t), has an autocorrelation function defined as follows

Gun(7) = e T (17)
The power spectrum for this autocorrelation function is given by
2 2
Dy (5) :"—ﬁz . (18)
—s2 + [3

In eq. (18), s is the Laplacian variable. From basic statistical properties, n(¢) can be
assumed to be generated by passing Gaussian white noise through a linear system
transfer function /(2062f)/(s + f); thus for the continuous system we have

a(t) = —Pn(t) + /202 B.w(t) (19)

Efw(t)w(z)] = 8(r — 1) .

with

To obtain the discrete form for eq. (19), we assume a sampling interval A and then
solve eq. (19) over this interval. Since f§ is a constant, the discrete model for the
Gauss-Markov process can be written as

Riy1 = Ay + bywyi
(20)
where,a,, = ¢ " and b, = o (1 — e=268)

In eq. (20), wy is a zero-mean, timewise-uncorrelated, unit-variance sequence with a
Gaussian probability distribution function. sy is therefore a zero-mean, exponen-
tially-correlated random variable whose standard deviation is ¢. The constant a,, can
range in values from —1 to + 1. For a stable variable, we restrict a,, to values between
0 and +1. For a, — 0,n(¢) changes rapidly and tends to be uncorrelated from
sample to sample. For a,, — 1, the behaviour of n(z) becomes more sluggish and it
tends to change little from sample to sample (LEAR, 1985).

2.2.2 MEDKEF seismic wavelet model

The next step in defining the MEDKF system model is fitting the wavelet into a
linear mathematical model. A seismic wavelet is typically modelled as an exponen-
tially decaying cyclic waveform (SHERIFF and GELDART, 1982) as follows:
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A(t) = Adge ") sinw(r — 1)), >t . (21

In eq. (21) 4¢ = initial amplitude, # = damping factor, and @ = dominant angular
frequency (i.e., ® = 2xnf). The shot noise characteristics of the seismic wavelet make
it challenging to model it in the time domain without introducing nonlinearities in the
describing equations. We know that the wavelet will take on the form defined in
eq. (21), but we do not know at what time (i.e., ¢) it will occur.

To simplify the mathematics and keep the KF in a linear form, we have modelled
the seismic wavelet as a periodic process with a random walk amplitude. This process
is defined as follows:

x1(t) = x2() sinfw(t — t)], t>1 . (22)

In eq. (22), x;(¢) is an approximation to the seismic wavelet defined by eq. (21), and
x2(¢) is the random walk process approximating 4o in eq. (21). The random walk
process facilitates the provision of some flexibility to the MEDKF when determining
the arrival time and initial amplitude (i.e., o and 4, in eq. (21)) of the seismic wavelet
understudy. The random walk process results when uncorrelated signals are
integrated. The process is defined as its derivative being driven by white noise as
follows:

x2(8) =w(t), where E[w(t)w(t)] =q()o(t—1) . (23)

By using a random walk process to define the seismic wavelets amplitude, we are able
to account for arrival time variations and maintain linearity in the KF formulation.
The linear continuous differential equation (i.e., eq. (1)) defining the seismic wavelets
is outlined as follows:

x1(t) = o x2(¢) cos(wt) (24a)
X2(t) = w(t), where E[w(t)w(t)] = q()d(t — 1) . (24b)

In eq. (24a) it is assumed that #y = 0 with respect to eq. (22). In addition, it is also
assumed that x,(¢) is a constant when differentiating eq. (22) to obtain eq. (24a) (i.e.,
F(t)x(¢) term in eq. (1)). The noise component of the system equation (i.e., G(¢)w(¢)
in eq. (1)) handles the random walk term x,(¢) = w(¢).

2.2.3 MEDKF governing equations
Substituting eqs. (19) and (24) into eq. (1) results in the continuous MEDKF
matrix system equation defined as follows:

x1 (1) 0 wcos(wt) 0 x1 () 0 0 wi(?)
wol=lo o o wd) |+ a0 0 [w(r)}' (25)
x3(1) 0 0 =Bl _p Lxs(0) 0 V2028 g
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In eq. (25), E[wi(t)wi(t)] = (¢t — 1) and E[w2(¢)w2(1)] = o6(¢ — 7). Both w,(¢) and
wy(t) are Gaussian white noise processes with mean zero and unity variance.
The discrete form of eq. (25) is given as

X1(k) 1 AwcosjwA(k—1)] 0 X1(k—1)
Xk | = 0 1 0 X2(k—1)
X3(k) 0 0 e hA 1o, X3(k—1)
0 0 -
W1 (f—
+ | di-1) 0 1= (26)
W2(k—1)

0 oVl—e2]_, *©

In eq. (26) A is the sampling rate, g(k — 1) = q(t)A, and wj;_;) and wy;_y) are zero
mean, unity variance, Gaussian white noise processes.

There is only one scalar measurement available for the MEDKF, which is a
combination of both the seismic wavelet understudy and the ambient noise (i.c.,
Z = Xi(k) + X3()). This results in the following measurement matrix:

H.=[1 0 1]. (27)
Given a sequence of measurements zy,zy,...,z, the observability condition defines
our ability to determine xg, x1, . ..,x; from the measurements. An observability check

was carried out on the previously defined MEDKF formulation and it was found
that the MEDKF was completely observable.

3. Results

3.1 Data Simulation

Prior to implementing the previously outlined KF formulation on real data,
extensive testing was carried out on synthetic data. This section presents a portion
of the test bed results. The first step in the simulation was to outline the source
wavelets defined by eq. (21). The P wave was modelled with a frequency of 200 Hz,
initial amplitude of 160mm/s*> and damping factor of 79/s. The S wave was
modelled with a frequency of 70 Hz, initial amplitude of 200 mm/s’> and damping
factor of 50/s. The sampling rate was set at 0.05 ms and a total sampling time of 1 s
was specified. Figure 3 illustrates the source wavelets generated with previous
parameters specified.

The next step in data simulation was to specify different Gauss-Markov
ambient noise processes. Figure 4 illustrates simulation results when the wavelets
shown in Figure 3 have added ambient Gauss-Markov background noise super-
imposed. Plots a to e in Figure 4 have the following Gauss-Markov parameters
specified:
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Simulating P and S wavelets by implementing eq. (21).

1
1
™
o 100 200 300 400 500 E00 Foo ann ann 1,000

||||||||||||-i|||||T|||||||||||-i|||||-{|||||||||||||||||T|||||
1] 100 200 300 400 500 GO0 700 &00 500 1,000
© sond------ e R R g [ R G m e R .
| | | | I I I |
% 1003 corp-ct g de e o 1=K 1 oo Foo oo T T
E i} F L ; 1 I L | ; i || A i
A00F-T---- (LA [ S Y DU AP O PP [ | S, P I SO FRDR [ L N D DL, [
||||||i|||||i|||||i|||||i|||||i|||||i|||||i|||||i|||||i||||||
100 200 300 400 300 600 700 Goo 300 1,000
2004 ---- -
B L R M T B T ¥ | e R e B R E e,
E o
£

1 1 I 1 1 1
T 11T T [ TITITrTr{rTrrrr[rrrrr{rrrrr{rrrrrr|rrrrrr

1 Il
T I
u} 100 200 300 400 500 GO0 700 800 900 1,000

200 s naas S P = IS A A e e A A

4
rrrrrrjrrrrrfrrrrr|rrrrrrjrrrrr[rrrrr LI B I B

T
0 100 200 300 400 S00 g0 700 &o0 00 1,000
Time (ms)

Figure 4
Superposition of wavelets illustrated in Figure 3 with varying ambient background noise.
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Table 1

Gauss-Markov simulation parameters

Plot Time constant (ms) Variance (mm?/s*)
A 0.0001 1000
B 0.1 1000
C 1 1000
D 10 2000
E 20 2000

Figure 5 illustrates the autocorrelations of the Gauss-Markov noise processes
illustrated in Figure 4(a) to (e). Figure 5 also illustrates the best fit curves where the
ambient noise Time Constant and Variance parameters were identical to those
specified above.

In these simulations and subsequent results from processed real data, the
MEDKEF filter was specified as a three-state filter as described by eq. (26). The P-
wave MEDKEF filter parameters were first specified, results obtained and then the S-
wave filter parameters were set and subsequent filter estimates derived. Had the
MEDKEF been set to a five-state filter (i.e., to incorporate both P wave and S wave
into the same filter), it would have been possible to track both the P wave and S wave
simultaneously. Alternatively, it would have been possible to track both the P
wave and S wave with two three-state MEDKEF filters running in parallel in software
multitasking threads.

Referring to eqgs. (16) and (26), the filter parameters set for the P-wave filter were
E[x;1(0)] = 0,E[x2(0)] =0, and E[x3(0)] =z, where z, is the data measurement at
to = 0,0 = 2nf where f =200 Hz, and Py =0 except for elements Py[l, 1] = 80,
Py[2,2] = 80, and Ry[3, 3] = 0. The values set for xy and Py had no significant effect on
the MEDKFs performance because it was found that the error covariance and filter
gain values reached steady responses rapidly. The random walk Q value was set to
0.3, where Q = ¢(#)*A and \/m ~ 77.5mm/s>. The MEDKF responded robustly to
variable Q values specified. In general, we have a more sluggish (low variability)
response for lower Q values as compared to higher values.

The Gauss-Markov parameters of ¢®> and 7, (i.e., 1/B) were derived adaptively
and automatically from the recorded time series. The S-wave initial parameters were
identical to those for the P wave except for the f = 70 Hz for the S wave. Since it is
assumed that the ambient noise defined the time series error, the measurement error
variance, R(t), was specified at a fraction of the Gauss-Markov variance (i.e.,
R(t) = ¢*(¢)/1000).

From our preliminary investigations, it was found that the best event detection
state to track was the seismic wavelets amplitude (i.e., state x,). Figure 6 illustrates
the MEDKF results after tracking the P wavelet. As illustrated, we have obtained a
dramatic improvement in the signal to noise ratio when comparing these results to
the initial seismic time series outlined in Figure 4. Figure 7 shows the MEDKF
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results after tracking the S wavelet. As with the P wavelet MEDKF results, an
impressive improvement was recorded in the signal-to-noise ratio after the
implementation of the MEDKF.

As mentioned in Section 2, the error covariance (Martix Ricatti) equation is a
fundamental part of the KF formulation. The error covariance matrix provides for
the determination of the Kalman gain and it quantifies the filter performance.

The continuous error covariance matrix for the MEDKF is defined as follows
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Figure 5
Applying a Gauss-Markov best fit to the simulated ambient noise autocorrelation.
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Figure 6
Kalman Filter results for the P wave. The seismic amplitudes (i.e., X3) illustrated show excellent signal-to-
noise ratio for the P-wave event detection.

2Py (t)w cos(wt)
Py (t)w cos(wt)
Psy(t)w cos(wt) — PPy (2)

0 .
—BPs(t)  —2BPs3(t) + o> (1 — e 2F%)

P(1) - B()

(28a)



463

Application of Kalman Filtering Techniques

Vol. 159, 2002

i i v
T T ™7 ™
700 000 900 1,000

d
1
Goo

soh,

L E I T
I
400

T
I
200

d
ML
200

L

WAy

M
100

I I
800 000 1,000

R

[EVEGEPUYS- SPUPIUPIYS PUNIVIYU JUNVSPIP J ‘UpUPIEpH- SpUpU TS | Y

T
600™-

,. —tT
400 500

T
300

M
100

T
00
X,

I
200

tinie estimates ~

-S-wave arrival |

7

800

700

sof

300

1,000

800

600

400

200

100

800

S0 Goo

400

100

-50

0
804

0

1,000

000

700

200

200

0

Time (ms)

Figure 7

Kalman Filter results for the S wave. The seismic amplitudes (i.e.
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Figure 8

Py (k) response for R(f) = co and MEDKEF initial conditions.

For simplicity, the off diagonal terms in eqs. (28a) and (28b) have been omitted due
to the symmetry of the error covariance matrix. The continuous error covariance for
the amplitude estimate (i.e., state x,(¢)) is defined as

Pii(t) = Q — (Pu (1) + P3(1))* /R(1) (29)

We see from eq. (29), that if there is a high measurement (i.e., R(¢) = oco0)P;;(¢) would
grow linearly at a rate specified by the random walk variance Q. Figure 8 illustrates
the discrete Py (k) value with a very high R(¢) specification and our initially specified
O value of 0.3. The fact that accurate measurements are utilized (i.e., low R(?)),
allows the MEDKF to constrain our error covariance estimates and bring them to
steady-state responses.
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Figure 9
Py (k) response for R(¢) = ¢*(¢)/1000 and MEDKF initial conditions.
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In general terms, the error covariance estimate Py (¢) is directly proportional to Q,
g, and f, and inversely proportional to R(¢). In addition, because term P () is a
function of cos?(wt), we would expect Py;(¢) to have components of oscillation at 2*w
where w = 2xnf. Figure 9 illustrates the Py (k) responses for the P-wave estimate for
test case A. As is shown, the error covariance estimate, Pj;(k), behaves as expected
where it reaches a steady response rapidly from the initially specified P;;(0). Py (k)
then oscillates at the steady response rate of 2*w or f = 400 Hz. It is also important
to bear in mind that P;; reflects uncertainty of both the Ay and #, parameters in

eq. (21).

3.2 Processing Real Data

The data presented in this paper were obtained from some of the microseismic
installations Weir-Jones Engineering Consultants has commissioned at heavy oil
extraction operations in Northern Alberta. Earlier work in this region has been
described by other authors (TALEBI ef al., 1998).

The Cold Lake area is located in Northern Alberta, Canada. Extensive, heavy oil
reserves underlie the area. The oil sands occur in the Mannville Group of Lower
Cretaceous age and range from 305 m to 610 m below surface. The primary reservoir
is the Clearwater formation at an average depth of 457 m. The sand in the Clearwater
is laterally and vertically continuous and pay thickness ranges from 15 m to 49 m.
The reservoir has 11 billion m? of bitumen in place.

BTAGE 1 F STAGE 2 4 STAGE 3

STEABA
LR C TN

HEATED OiL AND
WATER ARE FUMFPED
TO THE SURFACE

Figure 10
Typical steam injection mechanism in Northern Alberta.
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The Clearwater sand is an unconsolidated clean sand with porosities between 30%
and 35% and an average bitumen saturation of 70%. The absolute permeability
ranges from 0.5 x 1072 m? to 2 x 107> m? and viscosity reaches 150,000 cp. Initial
reservoir conditions are 3 °C and 3 MPa. Figure 10 illustrates a typical steam injection
mechanism in which there is pancake stratigraphy which is defined as follows:

Formation top Depth (m)
Surface 0
Colorado Shales 149
Grand Rapids 319
Clearwater 432
McMurray 485

Overlying the Clearwater is the Grand Rapids formation, which consists of sands
and shales. Above this is the Colorado Group of Upper Cretaceous age. It consists of
marine shales that are impervious and separate the oil sands from the glacial tills near
surface. Since most of the oil sands are immobile, additional heat and pressure are
required to recover the bitumen. Three main processes used are cyclic steam
stimulation, steam drive and steam assisted gravity drainage. A detailed technical
description of the microseismic monitoring equipment and geophone array instal-
lation was presented by TALEBI (1998).

250 Best Fit

?%MN ]”\W(Mvm

T

—————r—— - e —— - S aaan e
-50 o] a0 100 150 200 250 300 350 400 450 S00 S50 600

Amplitude

Time Shift (ms)

Figure 11
Autocorrelation calculated from the seismic time series presented in Figure 12 (a). The best fit parameters
are 6> = 350mm?/s?> and 7, = 20 ms.
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Input seismic trace (a), and the result based on the implementation of the Kalman Filter (b), as was
outlined in section 2 (f = 185 Hz for the P wave).

The data analysed in this paper were obtained using proprietary geophone arrays
specifically developed by the authors for these applications. The geophone arrays
consist of multiple sensing elements arranged on orthogonal axes. The arrays have a
natural frequency of 10 Hz, are damped at 70% of critical, and have a bandwidth
from 8 to 900 Hz.

Figure 11 illustrates the autocorrelation function of the seismic trace presented in
Figure 12(a). This autocorrelation was calculated by windowing on the portion of
data 600 ms and 1200 ms. The exponentially correlated process illustrated in
Figure 11 was fitted with the parameters ¢ = 350mm?/s?>, and 7, = 20 ms.
Figure 12(b) illustrates the results of implementing the MEDKF on the seismic trace
presented in Figure 12(a) with the parameters specified by fitting the autocorrelation
presented in Figure 11 and the dominant frequency set to 18.5 Hz for the P-wave
response. The remaining MEDKF initial filter parameters were set in an identical
manner to those specified in the previously outlined simulated results. As is shown in
Figure 12(b), there has been a dramatic improvement in the signal to noise increase
after implementation of the MEDKF.
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Figure 13
Autocorrelation calculated from the seismic time series presented in Figure 14(a). The best fit parameters
are ¢ = 157mm?/s?> and 7. = 13 ms.

The next set of data illustrates the MEDKF’s abilitty to identify the P-wave and
S-wave responses from the time series in real time. Figure 13 shows the autocor-
relation function of the seismic trace presented in Figure 14(a). This autocorrelation
was again calculated by windowing on the portion of data between 600 ms and 1200
ms. The Gauss-Markov noise process illustrated in Figure 13 was fitted with the
parameters o> = 157mm?/s?, T, = 20ms. In this analysis the frequency was set to
185 Hz for the P-wave response and a frequency of 30 Hz for the S-wave response.
Figure 14(b) and 14(c) illustrate the results after filtering. Similarly to Figure 12(b),
we again obtain excellent results where the P-wave and S-wave arrivals are clearly
identified.

Figure 15(a) illustrates a time series where it is very difficult to identify the P
wavelet visually, let alone automatically. In this test case the dominant frequency was
set to 170 Hz for the P-wave response. The exponentially correlated noise process
illustrated was fitted with the parameters o> = 7.7mm?/s?>, and 7, = 20m sec.
Figure 15(b) illustrates the filtered results where the P-wavelet response has been
more clearly identified.
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Figure 14

Input seismic trace (a); Kalman Filter P-wave arrival time estimation results ( f = 185Hz) (b); Kalman

Filter S-wave arrival time estimation results (/' = 30 Hz) (c).

4. Conclusions

In microseismic monitoring programs it is important to have reliable event
triggering and source parameter characterization. Poorly defined passive microseis-
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Input seismic trace (a), and Kalman Filter P-wave arrival time estimation results (f = 170 Hz,
6% = 7.7mm?/s%, and T, = 20ms).

mic triggering algorithms tend to acquire substantial amounts of data which demand
extensive post-processing manipulation; they also increase the work and reduce the
efficiency of the personnel operating the systems. This paper presented a real-time
Kalman Filter which modelled the background noise as a Gauss-Markov process and
the seismic wavelet as a periodic process with a random walk initial amplitude. The
filter allows for online processing and circumvents many of the problems associated
with frequency domain filters.

Both simulated signals and seismic data acquired from passive microseismic
installations in Northern Alberta were analysed and the results evaluated in terms of
the improvement in signal-to-noise ratio. The results are very encouraging; there is a
substantial improvement in signal-to-noise ratio after implementation of the Kalman
Filter. For example, for the simulated data presented, there is an approximate 12-old
increase in the signal-to-noise ratio as a result of the post-processing. For the
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processed real data, the signal-to-noise ratio is enhanced by approximately six times
(i.e., Fig. 12).

The authors’ ultimate objective is to provide a system which offers microseismic
system operators a reliable and cost-effective procedure which can process microse-
ismic data in real-time and provide accurate event locations with a reduction in the
amount of system operator intervention.
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