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ABSTRACT:  Among in-situ engineers there is considerable interest in the development of continuous seismic 
cone penetration test (C-SCPT). Until now the seismic measurements are generally done during pauses in the 
penetration of the CPT cone. Also to avoid that waves generated by the shear wave source would travel through 
the CPT rods to the receivers, the string is unclamped. Together they form a major interruption of the CPT 
process and extend the time to complete a CPT sounding substantially. The C-SCPT will make SCPT much 
more efficient and therefore easier to perform. At the same time it will substantially increase the requirements 
on the data acquisition system as data stacking (by repeating the seismic test several times at each depth) or 
performing the test from both the left and the right side of the probe is no longer possible. The most important 
consideration in C-SCPT is obviously the real-time signal enhancement and event detection. Baziw Consulting 
Engineer’s (BCE) main focus in C-SCPT is in the design of sophisticated digital filters to increase the S/N. As 
part of this BCE implements a novel and robust model of the source wave: the Amplitude Modulated Sinusoid 
(AMS), which has shown to be a highly robust and accurate approximation for many analytical representations 
of seismic source waves (such as the exponentially decaying cyclic waveform, the mixed-phase Berlage wave,
the zero-phase Ricker wave, and the zero-phase Klauder wave). In addition, the AMS wave has proven very 
accurate in modeling seismic data acquired during downhole seismic testing and passive seismic monitoring. 
The algorithm we developed for this application, the so-called C-SCPT SEED™ (Signal Enhancement and 
Event Detection) algorithm, uses real time Bayesian Recursive Estimation (BRE) digital filtering techniques to 
analyze the raw data. In this paper we will discuss this algorithm and provide practical examples to demon-
strate that BCE’s C-SCPT SEED™ algorithm provides considerable SCPT signal enhancement and event de-
tection advantages when processing C-SCPT seismic data, such as: • Ability to identify source wave “events” 
embedded in high variance and correlated noise environments • Significant S/N improvement • Source wave 
arrival time estimation • Ability to derive noise statistics • Dominant frequency estimation. 

 
 

1 INTRODUCTION 

There is considerable interest in methods of geo-
technical in-situ engineering that provide accurate 
estimates of the low strain (<10

-4
%) in-situ shear and 

compression wave velocities (VS and VP respective-
ly) and the associated absorption values (αS and αP  

respectively) in the ground, since these parameters 
form the core of mathematical theorems to describe 
the elasticity/plasticity of soils and they are used to 
predict the soil response (settlement, liquefaction or 
failure) to imposed loads (whether from foundations, 
heavy equipment, earthquakes or explosions (An-
drus et. al. (1999) and Finn (1984)).  Moreover, ac-
curacy in the estimation of shear and compression 
waves velocities is of paramount importance, be-
cause these values are squared during the calculation 
of various geotechnical parameters such as the Shear 
Modulus (G), Poisson’s Ratio ( µ ) and Young’s 
Modulus (E).  

Applied seismology techniques such as the seis-
mic cone penetration test (SCPT) have gained exten-
sive popularity in recent years since they allow for 

the in-situ estimation of the low strain shear and 
compression wave velocities and the associated ab-
sorption values.  The SCPT is a downhole seismic 
testing technique which was devised to measure 
seismic velocities directly through data obtained by 
installed seismic sensors in the cone penetrometer, 
in addition to the standard bearing pressure, sleeve 
friction and pore pressure sensors (Campanella et al. 
1986).  The seismic cone (SC) has proven to be a 
very accurate and reliable tool in the determination 
of Vs and Vp profiles. The advantages of the seismic 
cone consist of excellent soil probe coupling, a con-
trollable source and cost effectiveness because it is a 
retrievable probe. Details of the seismic cone, the 
downhole test procedures, and comparisons with the 
crosshole results at several sites have been described 
by Campanella et al (1986).  

In general terms, the cone is advanced to the 
depth of interest using a hydraulic reactionary push-
ing. The advance is halted at one meter (or other 
such increment) intervals. When the cone is at rest, a 
seismic event is caused at the surface using a ham-
mer blow or explosive charge, causing seismic 
waves to propagate from the surface through the soil 
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to be detected by seismic sensors installed in the 
cone penetrometer. This event is recorded and the 
penetrometer is advanced another increment and the 
process is repeated.  Interval velocities are calcu-
lated over the depth increment under study (Campa-
nella et al. 1989; Baziw 1993 and 2002 ) from the 
estimated seismic wave arrival and\or relative arrival 
times. 

In the standard SCPT techniques implemented the 
in-situ Vs and Vp interval velocities are determined 
by firstly obtaining the corresponding time series 
relative arrival times as the probe is advanced into 
the soil profile. The relative arrival times can be ob-
tained by utilizing the reverse polarity or cross-
correlation techniques (Campanella et al. (1986) and  
Baziw (1993 and 2002a)). The SCPT is a relatively 
time consuming process compared to the CPT in that 
pauses in the penetration of the CPT cone are re-
quired and the string is required to be unclamped so 
that waves generated by the shear wave source do 
not travel through the CPT rods to the receivers. In 
addition, data stacking is required so that the signal-
to-noise ratio (SNR) is increased. Data stacking in 
SCPT involves generating multiple sources and av-
eraging the recorded seismic data so that random 
noises are minimized. 

The development of a continuous SCPT (C-
SCPT) has been gaining considerable interest  
among in-situ engineers so that the issue of  SCPT 
latency can be  addressed. In the C-SCPT configura-
tion seismic source waves are generated as the pene-
trometer is pushed into the ground without stopping 
to unclamp the string, turning the rig/truck engine 
off, data stacking, and generating sources on  both 
the left and the right side of the probe for the case of 
SH wave interval velocity investigations. This of 
course offers a real challenge in terms of seismic 
signal processing as the SNR of the recorded C-
SCPT seismic data will be considerably lower com-
pared to standard SCPT data. Furthermore, an event 
detection and arrival time estimation capability in C-
SCPT is desired where first approximation interval 
velocity are calculated as the probe is pushed into 
the ground. BCE has been developing new tech-
niques to address the challenges presented by C-
SCPT. A particularly promising algorithms is the so 
called the so-called C-SCPT SEED™ (Signal En-
hancement and Event Detection) algorithm.  

2 C-SCPT SIGNAL ENHANCEMENT AND 
EVENT DETECTION 

Standard SCPT signal processing algorithms typ-
ically rely upon off-line analysis techniques such as 
applying zero phase digital frequency filters to the 
raw time series data to separate the measurement 
noise from the desired source waves (Baziw (1993 
and 2002a)). This is generally feasible due to the 

fact that there is typically significant frequency spec-
tra separation between the source waves and mea-
surement noise (when source wave reflections are 
not present). Subsequent to the application of the ze-
ro phase digital frequency filters polarization analy-
sis is applied so that the filtered responses on the x, 
y, and z components (for a triaxial configuration) are 
rotated onto a single full waveform (Baziw (2004a 
and 2004b)). 

The C-SCPT signal processing requirements are 
considerably more challenging due to the fact that 
seismic data is recorded in a significantly higher 
noise environment, there is not a distinct separation 
between the frequency and associated phase compo-
nents of the source waves and measurements noise, 
data stacking cannot be carried out and the real-time 
nature of the C-SCPT. 

Due to the real-time nature of the C-SCPT and 
the overlap of the source wave and measurement 
noise frequency spectra, sophisticated real-time re-
cursive Bayesian estimation techniques are applied 
to address the signal enhancement of the C-SCPT 
acquired time series. As previously stated, the algo-
rithm utilized for C-SCPT signal processing and 
event detection is referred to as C-SCPT SEED™. A 
fundamental component of the C-SCPT SEED™ is 
modeling of the source wave as an amplitude mod-
ulated sinusoid (AMS).   

2.1 Amplitude Modulated Sinusoid (AMS) 

 
 The AMS has been demonstrated to be a highly ro-

bust and accurate approximation for many analytical 

representations of seismic source waves such as the 

exponentially decaying cyclic waveform, the mixed-

phase Berlage wave, the zero-phase Ricker wave, 

and the zero-phase Klauder wave (Baziw (2002b, 

2004b, 2005, 2006, 2007,  and 2011). In addition, 

the AMS wave has proven very accurate in model-

ing seismic data acquired during downhole seismic 

testing and passive seismic monitoring. 

The mathematical representation of the AMS 

source wave is given as  

           (1) 

 

where x1(t) is an approximation to the seismic 

source wave,  x2(t) is the seismic wave's amplitude 

modulating term (AMT), ω is the dominant frequen-

cy of the wave, and φ is the corresponding phase. 

Baziw and Ulrych (2006) demonstrate  the robust-

ness of the AMS model by considering the zero 

phase Ricker wave. Although, the Ricker wave has a 

peak frequency, it doesn’t have a specific sinusoidal 

term and as was shown by Baziw and Ulrych (2006)  

the AMS model was able to reconstruct the desired 

wave by applying an appropriate amplitude modulat-

ing term.  
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Amini and Howie (2005) utilized a finite differ-

ence program (FLAC) to model downhole seismic 

source waves. Figure 1 illustrates the simulated 

source wave generated by Amini and Howie ob-

tained by personal communication. The source wave 

shown in Fig. 1 was generated by assuming a uni-

form halfspace with an in-situ shear wave velocity 

of 180 m/s and a sampling interval of 0.02 ms. Supe-

rimposed upon the finite difference source wave is a 

scaled 140 Hz sinusoid with zero crossing at 10.3 

ms. Also superimposed upon the source wave illu-

strated in Fig. 1 is an exponential decay peaking at 

15 ms and decaying at an exponential rate of 0.8/ms.  

 

 

 

 

 

 

 

 

 

Figure. 1. Finite difference source wave with supe-

rimposed 140 Hz sinusoid and exponential decay 

with rate 0.8/ms. 
 
AMS real data examples are provided from 

downhole seismic data captured during a SCPT. The 

SCPT real data examples where captured with high 

precision and high bandwidth (1 Hz to 10 KHz) pie-

zoelectric accelerometers which have an operational 

amplifier integrated within the sensor. The piezoe-

lectric accelerometers have highly desirable rise and 

decay times of approximately 5 µs. These fast rise 

and decay times result in recorded traces where the 

input of acoustic waves and ambient noise are rec-

orded with minimal or no sensor distortion.     

Figure 2 illustrates noisy SCPT data recorded at a 

depth of 15 m. The high noise energy is due to high 

frequency rod noise traveling down the steel exten-

sion rods and due to the close radial proximity of the 

source (Baziw (1993) and Baziw et. al. (2000)).  

Figure 3 illustrates the seismic data shown in Fig. 2 

superimposed upon the same seismic trace filtered 

with a zero phase shift 8
th

 order Butterworth 10 Hz 

to 150 Hz bandpass filter applied. Also superim-

posed upon the filtered seismic trace is a 73 Hz sinu-

soid. As is evident from Fig.3, the real SCPT source 

wave can be modeled as amplitude modulated sinu-

soid.  
 
 
 
 
 

 
 
 
 

 

 

Figure. 2. AMS real data example recorded during a 

SCPT. 

 

 

 

.  

. 

 

 

Figure. 3. Seismic trace in Fig. 3 filtered with a 

10Hz to 150Hz frequency filtered applied and a 

73Hz sinusoid superimposed.  
 

2.2 Gauss-Markov Measurement Noise Model 

To facilitate greater source wave and measure-
ment noise characterization the measurement noise 
is modeled as a Gauss-Markov process as opposed 
to simply being defined by a band of frequencies. By 
analyzing the autocorrelation and power spectrum of 
a large number of SCPT measurement noise time se-
ries it was possible to identify a mathematical model 
which sufficiently fits the SCPT measurement  noise 
process. Figure 4 illustrates the autocorrelation func-
tion and power spectral density of common random 
processes (Gelb ( 1974)). A Gauss-Markov process 
can be used to describe many physical phenomena 
(Baziw (2002)) and is a good candidate to model the 
SCPT background noise. 

The Gauss-Markov process has a relatively sim-
ple mathematical description. As in the case of all 
stationary Gaussian processes, specification of the 
process autocorrelation completely defines the 
process. The variance, σ

2
, and time constant, Tc (ie., 

β= 1/Tc), define the first-order Gauss-Markov 
process. These parameters are derived from the 
seismic time series by windowing on the noise por-
tion of the trace and calculating the autocorrelation 
of the ambient noises (Baziw (2002b and 2005)). 
The discreet mathematical equation for a Gauss-
Markov process is given as  

 
 
                    (2) 
 
 
In eq. (2), ∆ is the sampling rate and wk is a zero-

mean, timewise-uncorrelated, unit-variance se-
quence with a Gaussian probability distribution 
function. nk  is therefore a zero-mean, exponentially-
correlated random variable whose standard deviation 
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is σ. The constant aw can have a range of values 
from -1 to +1. For a stable variable,  aw is restricted  
to values  between 0 and +1. For aw → 0, nk changes 
rapidly and tends to be uncorrelated from sample to 
sample. For aw → 1, the behaviour of nk becomes 
more sluggish and it tends to change little from sam-
ple to sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 4. Description of common random 

processes (Gelb, 1974). 
 

2.3 C-SCPT SEED™ Formulation 

The C-SCPT SEED™ algorithm uses real-time 
Bayesian Recursive Estimation (BRE) digital filter-
ing techniques to analyze the raw SCPT data.  Baziw 
(2002b, 2004b, 2005, 2006, and 2011) ) outlines in 
detail the different mathematical tools such as Kal-
man filtering (KF), particle filter, and Hidden Mar-
kov Model filtering (HMM) which are offered in 
BRE. In general terms, AMS source waves defined 
as frequency anomalies are identified and extracted 
within statistically describable (Gauss-Markov) 
background noise.  

As a first step the C-SCPT SEED™ algorithm 
applies a bank of finite sinusoids (i = 1 to N) with 
dominant frequencies varying from low to high (e.g., 
30 Hz to 430 Hz). The seismic event is approx-
imated as an AMS, whereby the sinusoid is mod-
ulated by an amplitude modulating term (AMT) as 
previously described. As illustrated in Figure 5, a 
fixed set of possible sinusoids with corresponding 
dominant frequencies is specified at the outset. A 
bank of Kalman Filters are then utilized, whereby 
the possible seismic event is approximated as a sinu-
soid multiplied by an AMT. The KF system equa-

tions include the AMT components which are mod-
eled as a two state first order Taylor series with the 
velocity component represented by a Gauss-Markov 
process. The KF measurement equations incorporate 
the sinusoidal components sin(ωit ) where ωi = 2πfi 
and fi is the dominant frequency. The frequency 
components are incorporated as states within a 
HMM filter formulation.  The background noise is 
also included within the KF system equations 
through the Gauss-Markov process.   

The background noise parameters of variance, σ
2
, 

and time constant, Tc, are automatically derived 
from the recorded seismic data by windowing on the 
noise portion and calculating the auto-correlation. 
For example, on the initiation of the C-SCPT the da-
ta acquisition commences acquiring data at the user 
specified sampling rate ∆. A ring buffer of approx-
imately 9000 points is populated with seismic data. 
The ring buffer is divided into three time windows 
(e.g., 3000 points). The variance of each time win-
dow is calculated and the window with the lowest 
variance value is defined to be ambient noise. An 
auto-correlation is automatically calculated on the 
ambient noise where the parameters σ

2
 and Tc are 

readily obtained.  
The ring buffer of data with parameters σ

2
 and Tc 

is then feed into the C-SCPT SEED™ algorithm for 
signal processing and event detection. The C-SCPT 
SEED™ algorithm calculates the AMT component 
and the dominant frequency of the AMS source if 
present. The C-SCPT SEED™ algorithm must com-
plete filtering and event detection within ∆×ring buf-
fer size (e.g. 9000 point ring buffer and sampling 
rate of 5Khz results in a maximum processing time 
of 1.8 seconds) prior extracting the next set of data 
from the ring buffer. 

 When a trigger is initiated (e.g., SH hammer 
striking steel beam (Campanella et. al. (1986) and 
Baziw (1993)) the filtered AMT and raw seismic da-
ta is stored to file at the user specified sampling rate, 
sample time and pre-trigger when source impact is 
made. The real-time arrival time of the source wave 
(required for relative arrival time estimation and 
subsequent interval velocity calculation Baziw 
((1993 and 2002a)) is defined by applying a second 
event detection algorithm utilizing a short term aver-
age – long term average ratio (STA/LTA) (Baziw 
(2002b, 2004b and 2005)) technique. The STA/LTA 
portion of the C-SCPT SEED™ algorithm is applied 
to the derived AMT to determine the reference ar-
rival time of the source wave. If the user specified 
threshold was exceeded (“event”) and the estimated 
frequency resided within a user specified bandwidth 
(e.g., P-wave and S-wave bandwidth) then the time 
location of the event is defined to be the arrival time 
of the source wave. 
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Figure 5. C-SCPT SEED™ algorithm configuration. 

3 C-SCPT SEED™  PERFORMANCE RESULTS  

The performance of the C-SCPT SEED™ algo-
rithm is assessed by considering challenging syn-
thetic data. Figure 6 illustrates a Berlage source 
wave (Baziw (2005, 2006, and 2011)) with a domi-
nant frequency of 100 Hz, arrival time of 40 ms and 
maximum absolute amplitude of 7.2. 

 
 

 

 

Figure 6. Berlage source wave with dominant 

frequency of 100 Hz.  

 

3.1 Example 1: 

The SC source wave shown in Fig. 6 is embedded 
within measurement noise with variance σ

2
of 6 

units
2
 and time constant TC of 1 ms as illustrated in 

Fig. 7. The C-SCPT SEED™ algorithm is then ap-
plied on this noisy seismogram with a HMM fre-
quency bandwith and resolution of 30 - 430 Hz and 
2 Hz, ,respectively. A STA/LTA threshold of 1.2 
was specified. 

The resulting AMT and STA/LTA is illustrated in 
Figs. 7(B) and 7(C), respectively. The C-SCPT 
SEED™ algorithm also provides the dominant fre-
quencies when the STA/LTA ratio exceeds the thre-
shold of 1.2 as shown in Fig. 7(D).  

The results using the using the C-SCPT SEED™  
algorithm can be compared with the outcome when 
using a standard frequency filtering algorithm (ap-
plying an eight order digital bandpass (30 Hz to 150 
HZ filter) as illustrated in Fig. 8.  It is clear that C-
SCPT SEED™ algorithm provides a considerable 
SNR improvement compared to the standard fre-
quency filtering. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.(A) Seismogram with source wave of 

Figure 6 embedded in measurement noise; (B) De-

rived AMT using the C-SCPT SEED™  algorithm; 

(C) Derived STA/LTA using the C-SCPT SEED™  

algorithm; (D) Estimated frequencies when 

STA/LTA threshold of 1.2 exceeded using the C-

SCPT SEED™  algorithm. 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 8. (A) Seismogram with source wave of 

Figure 6 embedded in measurement noise;(B) De-
rived AMT after applying an eight-order zero phase 
bandpass (30 Hz to 150 Hz) filter; (C). Derived 
STA/LTA of filtered trace. 

 

3.2 Example 2 (σ
2
= 9 units

2
, TC = 3ms): 

The source wave shown in Figure 6   is embedded 
within measurement noise with variance of 9 units

2
 

and time constant of 3 ms as illustrated in Figure 
9(A). The C-SCPT SEED™ algorithm is then ap-
plied on the noisy seismogram of Fig. 9(A) where a 
HMM frequency bandwith and resolution of 30 Hz 
to 430 Hz and 2 Hz is applied, respectively. A 
STA/LTA threshold of 1.2 was specified. 

The C-SCPT SEED™ estimated AMT and 
STA/LTA is illustrated in Figs. 10(B) and 10(C), re-
spectively. Dominant frequencies are estimated 
when the STA/LTA ratio exceeds the threshold of 
1.2 as shown in Fig. 10(D). Figure 10(A) shows the 
C-SCPT SEED™ estimated noise statistics (variance 
= 6.9 and time constant = 2 ms), the averaged domi-
nant frequency estimate (108.8 Hz (true value = 100 
HZ) - averaged over time window where STA/LTA 
ratio exceeds the threshold of 1.2 as is illustrated in 
Fig. 10(D)) and arrival time estimate (denoted by 
vertical red bar).  

The impressive C-SCPT SEED™ results outlined 
in Fig. 10 are compared with a standard frequency 
filtering algorithm as illustrated in Fig. 11. Figure 
11(B) shows the seismogram of Figs. 10(A) and 
11(A) with an eight order digital bandpass (30 Hz to 
150 HZ) filter applied. The STA/LTA of Fig. 11(B) 
is shown in Fig. 11(C). It is clear from comparing 
Figs. 11(B) and 11(C) with Figs. 10(B) and 11(C) 
that the C-SCPT SEED™ algorithm provided consi-
derable S/N improvement and allowed for dominant 
frequency and noise statistics estimation.  

 
 

 
 
 
 
 
 
 
 
 
Figure. 10. (A) Seismogram with source wave of 

Figure 6 embedded in measurement noise with C-
SCPT SEED™ estimated arrival time, dominant fre-
quency and ambient noise statistics illustrated. (B) 
C-SCPT SEED™ estimated AMT. (C) C-SCPT 
SEED™  estimated STA/LTA. (D) SEED™ esti-
mated frequencies when STA/LTA threshold of 1.2 
exceeded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 11. (A) Seismogram with source wave of 

Figure 6 embedded in ambient noise with variance 
of 9 units2 and time constant of 3 ms. (B) Output af-
ter applying an eight-order zero phase bandpass (30 
Hz to 150 Hz) to seismogram in (A).  STA/LTA of 
filtered trace in (B). 

 
 
 
 
 



3.3 Example 3 (σ
2
= 12 units

2
, TC = 1ms): 

The source wave shown in Figure 6  is embedded 
within measurement noise with variance of 12 units

2
 

and time constant of 1 ms as illustrated in Fig. 
12(A). The C-SCPT SEED™ algorithm is then ap-
plied on the noisy seismogram of Fig. 12(A) where a 
HMM frequency bandwith and resolution of 30 Hz 
to 430 Hz and 2 Hz is applied, respectively. A 
STA/LTA threshold of 1.2 was specified. 

The C-SCPT SEED™ estimated AMT and 
STA/LTA is illustrated in Figs. 12(B) and 12(C), re-
spectively. Dominant frequencies are estimated 
when the STA/LTA ratio exceeds the threshold of 
1.2 as shown in Fig. 12(D). Figure 12(A) shows the 
SEED™ estimated noise statistics (variance = 11.2 
and time constant = 1 ms), the averaged dominant 
frequency estimate (115 Hz (true value = 100 HZ) - 
averaged over time window where STA/LTA ratio 
exceeds the threshold of 1.2 as is illustrated in Fig. 
12(D)) and arrival time estimate (denoted by vertical 
red bar).  

The C-SCPT SEED™ results outlined in Fig. 12 
are compared with a standard frequency filtering al-
gorithm as illustrated in Fig. 13. Figure 13(B) shows 
the seismogram of Figs. 12(A) and 13(A) with an 
eight order digital bandpass (30 Hz to 150 HZ) filter 
applied. The STA/LTA of Fig. 138(B) is shown in 
Fig.13(C). It is clear from comparing Figs. 13(B) 
and 13(C) with Figs. 12(B) and 12(C) that the C-
SCPT SEED™ algorithm provided considerable S/N 
improvement and allowed for dominant frequency 
and noise statistics estimation.  

4 CONCLUSIONS 

There is considerable interest among in-situ engi-
neers to develop continuous seismic cone penetra-
tion test (C-SCPT) instrumentation, data acquisition 
hardware and software and signal processing algo-
rithms. This endeavour arises from the fact that there 
is significant latency when carrying out a standard 
SCPT investigation due to the requirement of estab-
lishing a low noise environment. The pauses and de-
lays in SCPT are namely threefold. 1) The string is 
unclamped to avoid waves generated by the shear 
wave source traveling through the CPT rods to the 
receivers. 2) The engine of the in-situ vehicle is 
turned off to reduce measurements noise. 3) Data 
stacking is carried by averaging the recorded seismic 
data from multiple source generations at each depth 
increment. The most important consideration in C-
SCPT is obviously the real-time signal enhancement 
and event detection.  

This paper has outlined a new algorithm referred 
to as the C-SCPT SEED™ which allows for real-
time signal processing and enhancement of C-SCPT 
data and the ability to estimate arrival times. This 

would facilitate real-time interval velocity estima-
tion as the probe is advanced within the ground.  The 
C-SCPT SEED™ algorithm uses real-time Bayesian 
recursive estimation digital filtering techniques (e.g.,  
Kalman filtering,  particle filter, and Hidden Markov 
Model filtering) to analyze the C-SCPT data in real-
time. The C-SCPT SEED™ algorithm models mea-
surement noise in a statistical manner (Gauss-
Markov process) where the parameters of variance 
and time constant are estimated directly from the 
raw data in real-time. This is in contrast to standard 
SCPT digital frequency filters where it is assumed 
that the source wave and measurement noise fre-
quency spectra have distinct separation and the mea-
surement noise is simply described by a set band-
width of frequency components.  

In general terms, In the C-SCPT SEED™ algo-
rithm source waves defined as frequency anomalies 
are identified and extracted within statistically de-
scribable (Gauss-Markov) background noise. It is 
shown in this paper that BCE’s C-SCPT SEED™  
algorithm provides considerable signal enhancement 
and event detection advantages when processing C-
SCPT seismic data, such as: • Ability to identify 
source wave “events” embedded in high variance 
and correlated noise environments • Significant S/N 
improvement • Source wave arrival time estimation • 
Ability to derive noise statistics • Dominant fre-
quency estimation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. (A) Seismogram with source wave of 

Figure 6 embedded in ambient noise with C-SCPT 
SEED™ estimated arrival time, dominant frequency 
and ambient noise statistics illustrated. (B) C-SCPT 
SEED™  estimated AMT. (C) SEED™ estimated 
STA/LTA. (D) C-SCPT SEED™ estimated frequen-
cies when STA/LTA threshold of 1.2 exceeded. 

 
 



 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
Figure 13. (A) Seismogram with source wave of 

Figure 6 embedded in ambient noise with variance 
of 12 units2 and time constant of 1 ms. (B) Output 
after applying an eight-order zero phase bandpass 
(30 Hz to 150 Hz) to seismogram in (A).  STA/LTA 
of filtered trace in (B). 
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