
Microseismic Event Detection Kalman Filter:

Derivation of the Noise Covariance Matrix

and Automated First Break Determination

for Accurate Source Location Estimation

ERICK BAZIW1, BOHDAN NEDILKO1, and IAIN WEIR-JONES1

Abstract—Since 1972, Weir-Jones Engineering Consultants (WJEC) has been involved in the

development and installation of microseismic monitoring systems for the mining, heavy construction and

oil/gas industries. To be of practical value in an industrial environment, microseismic monitoring systems

must produce information which is both reliable and timely. The most critical parameters obtained from a

microseismic monitoring system are the real-time location and magnitude of the seismic events. Location

and magnitude are derived using source location algorithms that typically utilize forward modeling and

iterative optimal estimation techniques to determine the location of the global minimum of a predefined

cost function in a three-dimensional solution space. Generally, this cost function is defined as the RMS

difference between measured seismic time series information and synthetic measurements generated by

assuming a velocity structure for the area under investigation (forward modeling). The seismic data

typically used in the source location algorithm includes P- and S-wave arrival times, and raypath angles of

incidence obtained from P-wave hodogram analysis and P-wave first break identification. In order to

obtain accurate and timely source location estimates it is of paramount importance that the extraction of

accurate P-wave and S-wave information from the recorded time series be automated—in this way

consistent data can be made available with minimal delay. WJEC has invested considerable resources in

the development of real-time digital filters to optimize extraction, and this paper outlines some of the

enhancements made to existing Kalman Filter designs to facilitate the automation of P-wave first break

identification.

Key words: Microseismic monitoring, Kalman filter, discrete covariance matrix, state-space, seismic

wavelet first break, hodograms.

1. Introduction

A microseismic monitoring system is an assembly of hardware and software

components designed to acquire and analyze, in real time, the acoustic signals

collected by an array of appropriate transducers. Systems are generally installed in

areas where seismicity has been induced by human activity. Seismic activity is often

observed in the vicinity of underground excavations, deep open pits and quarries,
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around and below large reservoirs where fluids are being injected into, or removed

from, permeable subsurface formations, and adjacent to the sites of large

underground explosions (GIBOWICZ and KIJKO, 1994). In regions where the level

of induced seismicity is high and it is accompanied by significant ambient noise, it is

essential that the microseismic monitoring systems possess the capability of

automatically identifying the P and S waves generated by seismic events within the

noise contaminated raw seismic time series. Reliable automated identification allows

for the timely analysis of a large volume of data and the delivery of results to the end

user in a useful manner. The ability to locate microseismic events accurately is

directly dependent upon the ability to identify the P- and S-wave responses (phase

association) and determine subsequent arrival times (phase picking) (GE and KAISER,

1992).

The technical challenges associated with automated phase association and

picking can be reduced if the raw data are of high quality. To this end the authors

and their colleagues have developed a number of multi-element seismic sensor arrays

with bandwidths, signal-to-noise ratios, and mechanical characteristics tailored to

different seismic environments. In addition, much effort has been invested in

formulating intelligent digital signal processing algorithms for real-time seismic event

detection. BAZIW and WEIR-JONES (2002) present a detailed discussion of a

Microseismic Event Detection Kalman Filter (MEDKF). In this paper, a thorough

review of the Kalman filter formulation is provided along with the governing

equations defining the MEDKF. In the original MEDKF formulation some

modeling simplifications were assumed when deriving the Noise Covariance Tran-

sition Matrix. In Section 2 of this paper, the Noise Covariance Matrix is derived

without the modeling simplifications and the new MEDKF governing equations are

presented.

There are three fundamental time series measurements obtained from the

installed seismic sensor array which allow the investigator to locate an event

accurately. These parameters are:

� the angles of incidence obtained from hodogram or polarization analysis and

P-wave first break identification,

� P- and S-wave arrival times,

� P-S arrival time differences.

Generally, source location algorithms attempt to minimize iteratively a cost function

identified as the RMS difference between the three fundamental parameters and

corresponding synthetic derived values. The derivation of synthetic values is referred

to as forward modeling and this requires the specification of the velocity structure of

the area under investigation. Section 3 elaborates on the importance of utilizing

raypath angles of incidence measurements of appropriate precision so that an

optimal and cost effective seismic sensor network is implemented while maintaining

the required seismic event location accuracy. In Section 3 the ability of the MEDKF

to automate the P-wave first break identification is also discussed. Finally, Section 4
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outlines arrival time estimation results from a microseismic monitoring installation in

Northern Alberta where cyclic steam stimulation is occurring.

2. Microseismic Event Detection Kalman Filter Formulation

The microseismic phase association and event picking digital signal processing

filters designed and implemented by the authors rely upon real-time and time domain

mathematical algorithms such as the Kalman filter. The Kalman filter is an optimal

(in a least-squares sense) recursive filter which is based on state-space, time-domain

formulation of physical problems. In this way it avoids the difficulties commonly

associated with frequency domain filters (BAZIW, 1993), and is ideal for real-time

applications. The filter requires that the physical problem be modeled by a set of first-

order differential equations which, with initial conditions, uniquely define the system

behavior. The filter utilizes a knowledge of system and measurement errors and

statistical information about the initial conditions. A thorough discussion of the

continuous, discrete, and nonlinear versions of the Kalman Filter is provided by

BAZIW (1988) and BAZIW and WEIR-JONES (2002).

In general terms, The Kalman filter is a method for estimating a state vector x

from measurement z. The state vector may be corrupted by a noise vector w and the

measurement vector is corrupted by a noise vector v. The filter is applicable for

systems that can be described by a first order differential equation in x and a linear

(matrix) equation in z. The filter can be described in both continuous and discrete

form. The continuous state and measurement equations are given by

_xxðtÞ ¼ F ðtÞxðtÞ þ GðtÞwðtÞ ð1Þ
zðtÞ ¼ HðtÞxðtÞ þ vðtÞ; ð2Þ

where x is an n vector, w is a p vector, and z and v are m vectors. The random (vector)

processes w and v are assumed to be zero mean, white noise processes. It is further

assumed that w and v are statistically independent of each other. The corresponding

discrete state and measurement equations are given by

xk ¼ Uk�1xk�1 þ Ck�1wk�1; wk � Nð0;QkÞ ð3Þ
zk ¼ Hkxk þ vk; vk � Nð0;RkÞ: ð4Þ

In equations (3) and (4), symbol N denotes a normal distribution with mean 0 and

variance Qk and Rk, respectively. In addition, U is defined as the State Transition

Matrix, C is the Input Transition Matrix, and H is the Measurement Matrix. The

discrete Kalman Filter estimation equations are outlined as follows:

State Estimate Extrapolation:

x̂xkð�Þ ¼ Uk�1x̂xk�1ðþÞ; ð5Þ
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Error Covariance Extrapolation:

Pkð�Þ ¼ Uk�1Pk�1ðþÞUT
k�1 þ Ck�1Qk�1C

T
k�1: ð6Þ

The term Ck�1Qk�1CT
k�1 in equation (6) is referred to as the Noise Covariance Matrix

(NCM).

State Estimate Update:

x̂xkðþÞ ¼ x̂xkð�Þ þ Kk zk � Hkx̂xkð�Þ½ 	 ð7Þ

Error Covariance Update:

PkðþÞ ¼ I � KkHk½ 	Pkð�Þ ð8Þ

I is the identity matrix in equation (8).

Kalman Gain Matrix:

Kk ¼ Pkð�ÞHT
k HkPkð�ÞHT

k þ Rk
� ��1 ð9Þ

Initial Conditions:

E x0½ 	 ¼ x̂x0; E ðx0 � x̂x0Þðx0 � x̂x0Þ
T

h i
¼ P0: ð10Þ

The computational sequence for the discrete Kalman filter is outlined as follows:

A. At time index k ¼ 0, specify initial conditions x̂x0; and P0, and compute U0 and Q0.

B. At time index k ¼ 1, compute x̂x1ð�Þ, P1ð�Þ, H1, R1, and the gain matrix K1.

C. Using the measurement z1 at time index k ¼ 1, the best estimate of the state at

k ¼ 1 is given by

x̂x1ðþÞ ¼ x̂x1ð�Þ þ K1 z1 � H1x̂x1ð�Þ½ 	:

D. Update the error covariance matrix P1(+).

E. At time index k ¼ 2, a new measurement z2 is obtained and the computational

cycle is repeated.

The MEDKF is a three state Kalman Filter incorporating ambient noise and seismic

wavelet responses within the recorded time series (BAZIW and WEIR-JONES, 2002).

The ambient noise is modeled as a Gauss-Markov process with the following

continuous system representation:

_nnðtÞ ¼ �b nðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
2r2b

p
wðtÞ: ð11Þ

In equation (11) E[w(t)w(sÞ	 ¼ d(t�s), where d(t�s) is the Dirac delta function, and

r2 and Tc (i.e., b ¼ 1=Tc) define the variance and time constant of the process. The

discrete form of equation (11) is written as:

nkþ1 ¼ awnk þ bwwk

where, aw ¼ e�bD and bw ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e�2bDð Þ

q
:

ð12Þ
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In equation (12), wk is a zero-mean, timewise-uncorrelated, unit-variance sequence

with a Gaussian probability distribution function. nk is therefore a zero-mean,

exponentially-correlated random variable whose standard deviation is r.
The seismic wavelet is modeled as a periodic process with a random walk

amplitude. This process is defined as:

x1ðtÞ ¼ x2ðtÞ sinðxtÞ: ð13Þ

In equation (13), x1ðtÞ is an approximation to the P-wave or S-wave seismic wavelet,

and x2ðtÞ is a random walk process approximating the exponentially decaying seismic

wavelet amplitude. The random walk process facilitates the provision of some

flexibility to the MEDKF when determining the arrival time and initial amplitude of

the seismic wavelet under study. The random walk process results when uncorrelated

signals are integrated. The process is defined as its derivative being driven by white

noise as follows:

_xx2ðtÞ ¼ wðtÞ; where E wðtÞwðsÞ½ 	 ¼ Qdðt � sÞ: ð14Þ

By using a random walk process to define the seismic wavelets amplitude, one is able

to account for arrival time variations and maintain linearity in the KF formulation.

The linear continuous differential equation defining the seismic wavelet is:

_xx1ðtÞ ¼ xx2ðtÞ cosðxtÞ þ sinðxtÞwðtÞ ð15Þ
_xx2ðtÞ ¼ wðtÞ; where E wðtÞwðsÞ½ 	 ¼ Qdðt � sÞ: ð16Þ

To simplify the formulation of the MEDKF governing equations, BAZIW and WEIR-

JONES (2002) made the assumption that state x2ðtÞ was considered to be constant

when differentiating equation (14). In this paper, this assumption is no longer made

and a slightly modified MEDKF formulation is obtained. The State Transition

Matrix remains unaffected by relaxing the assumption that state x2ðtÞ remains

constant, however the Input Transition Matrix and the Noise Covariance Matrix

change for the seismic wavelet model. From equations (11) and (15) the continuous

MEDKF matrix system equation is defined as:

_xx1ðtÞ
_xx2ðtÞ
_xx3ðtÞ

2
4

3
5¼

0 xcosðxtÞ 0
0 0 0
0 0 �b

2
4

3
5
¼F ðtÞ

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5þ

ffiffiffiffi
Q

p
sinðxtÞ 0ffiffiffiffi
Q

p
0

0
ffiffiffiffiffiffiffiffiffiffi
2r2b

p
2
4

3
5
¼GðtÞ

w1ðtÞ
w2ðtÞ

� 


ð17Þ

In equation (17), E w1ðtÞw1ðsÞ½ 	 ¼ dðt � sÞ and E w2ðtÞw2ðsÞ½ 	 ¼ dðt � sÞ. Both w1ðtÞ
and w2ðtÞ are Gaussian white-noise processes with mean zero and unity variance. The

only difference between the continuous system outlined in equation (17) and that

presented by BAZIW and WEIR-JONES (2002) is the continuous Input Transition

Matrix GðtÞ; therefore, the discrete Transition Matrix does not change with the
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formulation defined in equation (17), however it is required to derive an updated

discrete Noise Covariance Matrix.

Due to the fact that the ambient noise and seismic wavelet models are

independent of one another, they can be treated separately. Figure 1 illustrates the

block diagram of the seismic wavelet modeled as a random walk periodic process

with the following transfer functions:

G0ðw1 to x1Þ ¼ G0
1 ¼ 2x= s s2 þ x2

� �� �
; ð18Þ

G0ðw1 to x2Þ ¼ G0
2 ¼ 1=s: ð19Þ

In equations (18) and (19) s is the Laplacian variable. The corresponding weighting

functions are:

g01ðtÞ ¼
2

x
1 � cosðxtÞ½ 	; ð20Þ

g02ðtÞ ¼ 1: ð21Þ

The Noise Covariance Matrix (NCM) can be determined by calculating the mean-

square response (GELB, 1978) of x1ðtÞ and x2ðtÞ as follows:

NCM ¼ E xixj
� �

¼
ZD

0

ZD

0

g0ig
0
jE w1ðuÞw1ðvÞ½ 	 du dv

¼
ZD

0

g0ig
0
jdðu� vÞQdu dv:

ð22Þ

Carrying out the necessary calculations results in the following seismic wavelet Noise

Covariance Matrix:

NCM ¼ 2Q
x

2
x

3
2 D � 2 sinðxDÞ

x þ cosðxDÞ sinðxDÞ
2x

h i
D � sinðxDÞ

x

h i
D � sinðxDÞ

x

h i
Dx
2

2
4

3
5: ð23Þ

In equation (23) D is the sampling rate.

BAZIW and WEIR-JONES (2002) describe how the MEDKF’s ambient noise model

parameters are determined adaptively from the raw seismic time series by automatically

⊗
1/s

 

ωs/ (S2+ω2)

w1(t)
white noise with

variance Q
x2(t)

+

+
1/s

x1(t)
ω / (S2+ω2)

Figure 1

Periodic random walk process block diagram.
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deriving the ambient noise autocorrelation automatically. From the ambient noise

autocorrelation the variance (r2) and time constant (1=b) parameters are obtained

adaptively. The random noiseQ value is adaptively specified in a manner similar to the

technique utilized by LEAR (1985) when modeling nondeterministic forces such as the

acceleration of a fighter plane in a dog fight with another plane. In this case,

the acceleration standard deviation is chosen to be about 1/3 of the expected

maximum acceleration. In specifying the Q value for the MEDKF, the algorithm

identifies the maximum amplitude within the seismic time series under investigation

and sets theQ value to 1/9 of the square of thismaximum.The initial state vector x0 is set

to the null vector [0, 0, 0] and the initial error covariance matrix is set to null matrix

except for the diagonal elements which are all set to Q.

3. Accurate Source Location Estimation Utilizing Automated

First Breaks with the MEDKF

The primary objective of a microseismic investigation is to obtain accurate event

locations from measured seismic time series in a timely manner. Generally, the seismic

location algorithm utilizes forward modeling to generate synthetic measurements

which are iteratively compared to actual measurements. The source location algorithm

optimallyminimizes a cost function based upon the L1 orL2 norm applied to differences

between the measured and synthesized P- and S-wave arrival times, and angle of

incidences determined from the P-wave particle motion. Inclusion of all these

parameters in the cost function increases the source location accuracy and subsequently

decreases the solution space.

P-wave hodogram or polarization analysis is carried out to determine the incident

angles of the seismic source raypath. In this methodology, it is very important to obtain

accurate P-wave first break estimates so that reliable incident angle measurements are

derived. In the case of a linear array of transducers, the azimuth angle information

derived from the hodogram analysis allows the investigator to limit the solution space

to the event’s azimuth plane and subsequently reduce the source location problem

from three dimensions to two dimensions (i.e., range and depth on azimuth plane).

In passive seismic monitoring the event time is not available as an input

parameter; therefore, the investigator is required to compare relative sensor arrival

times. The time differencing of P-wave arrival times in microseismic event location

results in hyperbolic solution spaces. The intersection of the azimuth, P-wave time

differencing, and P-S wave time separation solution spaces serves as an estimate of

source location error.

The MEDKF has been configured so that it not only automates the estimation of

the P-wave and S-wave arrival times, but it also gives first break information for the

raypath angles of incidence determination.

Vol. 161, 2004 Microseismic Event Detection Kalman Filter 7



3.1 Deriving Incidence Angles from P-wave Hodogram Analysis

Figure 2 illustrates the compression (P) and shear (SV and SH) source wavelets

impacting upon a seismic sensor package. As it is shown in Figure 2, the P-wave’s

particle motion is in the same direction as the raypath, the SH wavelet’s particle

motion is perpendicular to the raypath and is parallel to the horizontal ground

surface, and the SV wavelet’s particle motion is also perpendicular to the raypath but

along the vertical normal to the raypath. The symbols / and h define the raypath’s

angles of incidence in spherical coordinates, where 0 � h � 360
 and 0 � / � 180
.

The investigator carries out hodogram analysis to derive the angles of incidence of

the source wavelet arriving at the sondes.

The hodogram analysis procedure starts by specifying a time window which

delineates the P wave for the E, N, and Z component seismic sensors in a triaxial

package configuration. An example of a time window identifying the P-wave pulse is

illustrated in Figure 3(a) where the time windows are marked with thicker lines. The

amplitudes of E, N, and Z component seismic time series are plotted against one

another (hodograms) within the time window. A least-squares regression line is then

applied to the hodograms. Slopes of the three lines tgðHyxÞ, tgðHyzÞ, and tgðHxzÞ
provide angle of incidence information, which is then corrected with respect to

direction of the wavelet arrival. Figure 3(b) illustrates the hodograms with regression

lines drawn.

Finally, a covariance matrix is calculated for the hodograms. The eigenvalues of

this covariance matrix allow for linearity calculations. Highly accurate hodograms

EW

+Z

-Z

N

S

P-wave

SV-wave

SH-waveφ

θ
r

ρ

Figure 2

Source P, SV , and SH wavelets impacting on seismic sensor.
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Figure 3

Windowing on seismic wavelets (a) and 3-D hodograms (b).
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have a linearity approaching 1.0 and low accuracy hodograms have a linearity near

zero.

The angles / and h obtained from the hodogram analysis will range from �90
 to

þ90
. P-wave first break arrival time information allows the investigator to convert

these so that 0
 � h � 360
, and 0
 � / � 180
. The direction of the seismic sensor

particle motions is derived from the signs of E, N, and Z components of the seismic

time series at the arrival time.

The derived hodogram angles are converted to global incident angles by defining

the incident angles of the seismic ray as the angle which would be required to give the

proper signs of the E, N, and Z component amplitudes at the first break arrival time.

For example, in the E-N plane, if the first break arrival time is indicative of negative

E and N component responses, then the incident ray is assumed to reside in the first

quadrant. In the case of multiple linear arrays, the azimuth solution space is

calculated as an intersection of lines which delineate the azimuth angle tolerances.

Figure 4 illustrates the plane view of the solution space for two linear arrays. If only

one linear array is available for analysis, the width of the uncertainty or error of the

azimuth plane estimate can be used as a delineator for the azimuth solution space.

3.2 Obtaining Microseismic Locations in Homogeneous Medium Utilizing P-wave

and S-wave Time Differencing

As previously stated, the final solution space is derived by the intersections of

the P-wave incident angle solution space, the P-wave hyperbolic solution space,

Z

X

Array #2

Array #1

2∆α

Figure 4

Azimuth solution space is formed by four intersecting tolerance lines (plan view).
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and the P-S wave arrival time separation solution space. The time differencing of

P-wave arrival times in microseismic event location results in hyperbolic solution

spaces. The principle of arrival-time differencing is outlined by considering the two

sensors illustrated in Figure 5. A seismic event location is calculated using the

differences of arrival times detected at the two sondes. This approach has been

used in shore-based marine radio navigation systems (e.g., shoran and the rho-rho

mode of Loran-C), and is applicable to microseismic event location (GE and

HARDY, 1988).

To simplify the model, we assume a constant P-wave velocity, Vp, along the

source-sensor raypath. If the vertical axis of the azimuth plane is positioned along

the sensors’ vertical array, and the X-axis is centered between the two sondes, then

the time differencing equation for ith sensor is defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðc0 � yÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðci þ yÞ2

q
¼ Vpðti � tminÞ: ð24Þ

In equation (24), tmin is the minimal arrival time for the array, x and y are the

source coordinates on the azimuth plane, and ti is the arrival time at the ith

sensor.

The standard equation which defines a hyperbola is given as:

y2

b2
� x2

a2
¼ 1: ð25Þ

Figure 5

Simplified time differencing model.
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Equation (24) is fitted into the format of equation (25) by letting yi be the vertical

coordinate of ith transducer, and ymin be the coordinate of the triggering transducer.

Then:

a2
i ¼

4c2i � s2i
4

; ð26Þ

b2
i ¼

s2i
4
; ð27Þ

where

ci ¼
yi � ymin

2

��� ���; ð28Þ

si ¼ Vpðti � tminÞ ¼ VpDti; ð29Þ
Dti ¼ ti � tmin: ð30Þ

Substituting the ai and bi parameters defined in equations (26) and (27) into (25),

results in the set of hyperbolae shown in Figure 6 (i.e., y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

a2
i

� �
b2
i

r
).

A minimum of two time difference measurements is required in order to obtain a

source location on the azimuth plane. Generally, there will be inherent arrival time

detection errors, dti, that result in perturbations of the hyperbolae as illustrated in

Figure 7. The arrival time errors lead to a non-unique microseismic event location

with a solution space defined by the overlapped perturbed hyperbolae. When Dti is

substituted in equation (29) by Dti � dti, we obtain a0i, b
0
i, a

00
i , and b00i which define

upper and lower limits of the perturbed area.

Figure 6

The principle of P-wave arrival time difference produces two hyperbolas for each pair of geophones.
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The solution space can be reduced in size by adding more seismic sensors to the

network (i.e., increasing the density of the time difference hyperbolas) and by

strategically placing them around the area under microseismic investigation.

Alternatively, the investigator can incorporate measured P-S time differences in

the source location algorithm so that the solution space can be further reduced.

The time difference between P wave and S wave originating from the same

seismic event defines a sphere with its origin at the recording sensor and radius at the

source location. On the azimuth plane, this sphere becomes a circle with radius Ri.

centered at the ith recording sensor.

If we assume constant P-S velocities along the raypath, then for the ith geophone

we have:

Vpti ¼ Vsðti þ Dtp�s
i Þ; ð31Þ

where ti is the time it takes a P wave to travel from the source of the seismic event to a

geophone, and Dtp�s
i is the P-S arrival time difference. If we let Ri be the distance

between a source and the ith geophone then:

Ri ¼ Vpti ð32Þ

and

Dtp�s
i ¼ Ri

Vs
� Ri

Vp
; ð33Þ

Figure 7

If errors are present in arrival time data, the solution area is formed by overlapped tolerance intervals.
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from equation (31) it follows that:

ti ¼
DtiVs
Vp � Vs

: ð34Þ

When an investigator applies the principle of P-S arrival time to calculate a source

location, only the measurement Dtp�s
i rather than ti is available. If an error dtp�s

i is

present in the measurements of Dtp�s
i , tolerances for the P-S arrival time difference

solution space are calculated as:

R1;2
i ¼ VpVs

Vp � Vs
Dtp�s

i � dtp�s
ið Þ ð35Þ

which follows from equations. (32) and (34).

Equation (35) produces two confocal circles as is illustrated in Figure 8. The

reduced solution space resulting from the incorporation of the P-wave arrival time

differences, Figure 7, and the P-S time difference solution space, Figure 8, is

illustrated in Figure 9. The final solution space which is defined as the intersection of

the azimuth (for a single linear array), P-wave time differencing, and P-S wave time

separation solution spaces is shown in Figure 10.

3.3 Utilizing the MEDKF for First Break Estimation

As outlined in Section 2 and discussed by BAZIW and WEIR-JONES (2002), the

MEDKF models the seismic source wavelet as a random walk periodic process as a

best approximation to an exponentially decaying cyclic waveform which is defined as

Figure 8

Microseismic solution space utilizing P-S time differencing for two vertical sondes.
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AðtÞ ¼ A0e�h t�t0ð Þ sin x t � t0ð Þ½ 	; t � t0: ð36Þ

In equation (36) A0 � initial amplitude, h � damping factor, t0 � wavelet arrival

time, and x � dominant angular frequency (i.e., x ¼ 2pf). The filter tracks the

random walk state (x2) which is a best estimate of the term A0e
�hðt�t0Þ in

equation (37).

Figure 9

Illustration of reduced solution space.

Figure 10

Final solution space for a linear seismic array. The solution space is defined as intersection of the azimuth,

P-wave time differencing, and P-S wave time separation solution spaces.
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The state x2 approximates the amplitude of the source wavelet, and its maximum

value within the time series depends upon whether the source wavelet is minimum,

mixed, or maximum phase; for these reasons, it is not possible to determine the first

break arrival time based solely on the maximum response of the x2 state. The

technique implemented by the authors to automate the first break source wavelet

detection is to track the full seismic waveform amplitude defined as:

qðtÞMEDKF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞ2MEDKF�x2 þ NðtÞ2MEDKF�x2 þ ZðtÞ2MEDKF�x2

q
; ð37Þ

where q(t)MEDKF defines the MEDKF full seismic waveform amplitude time series

derived from the MEDKF x2 best estimates of the East, North, and Z component

time series. The time location of the maximum q(t)MEDKF amplitude response reflects

the condition of the wavelet under study (i.e., whether it is minimum, mixed, or

maximum phased). To obtain the first break arrival time, the user needs to determine

the initial rise time of q(t)MEDKF due to the input of the source wavelet under study.

This is accomplished by moving back from the maximum q(t)MEDKF value within the

time series until a time index is identified where the q(tfirst break)MEDKF amplitude is

within 10% to 20% of the maximum q(t)MEDKF amplitude. This time index is

identified as the first break arrival time.

4. Results

The data presented in this paper were obtained from a microseismic installation

Weir-Jones. Engineering Consultants had commissioned at heavy oil extraction

operations in Northern Alberta. Earlier work in this region has been described by

other authors (TALEBI et al., 1998).

The Cold Lake area is located in Northern Alberta, Canada. Extensive, heavy oil

reserves underlie the area. The oil sands occur in the Mannville Group of Lower

Cretaceous age and range from 305 m to 610 m below surface. The primary reservoir

is the Clearwater formation at an average depth of 457 m. The sand in the

Clearwater is laterally and vertically continuous and pay thickness ranges from 15 m

to 49 m. The reservoir has 11 billion m3 of bitumen in place.

The Clearwater sand is an unconsolidated clean sand with porosities between

30% and 35% and an average bitumen saturation of 70%. The absolute permeability

ranges from 0:5 � 10�12 m2 to 2 � 10�12 m2 and viscosity reaches 150,000 cp. Initial

reservoir conditions are 3 
C and 3 MPa. Figure 11 illustrates a typical steam

injection mechanism where there is pancake stratigraphy which is defined as follows:

Overlying the Clearwater formation is the Grand Rapids formation, which

consists of sands and shales. Above this is the Colorado Group of Upper Cretaceous

age. It consists of marine shales that are impervious and separate the oil sands from

the glacial tills near surface. Since most of the oil sands are immobile, additional heat
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and pressure are required to recover the bitumen. Three main processes used are

cyclic steam stimulation, steam drive and steam assisted gravity drainage. A detailed

technical description of the microseismic monitoring equipment and geophone

sondes installation was presented by TALEBI (1998).

The data analyzed in this paper were obtained using proprietary geophone arrays

specifically developed by the authors for these applications. The geophone arrays

consist of multiple sensing elements arranged on orthogonal axes. The arrays have a

natural frequency of 10 Hz, are damped at 70% of critical, and have a bandwidth

from 15 to 600 Hz.The seismic data analyzed in this section were acquired with a

linear array of five triaxial multi-element geophones. The geophones are located at

Figure 11

Typical steam injection mechanism in Northen Alberta.

Table 1

Cold Lake Pancake Stratigraphic Formations

Formation Top Depth(m)

Surface 0

Colorado Shales 149

Grand Rapids 319

Clearwater 432

McMurray 485
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approximate depths of m 155 m (G1), 215 m (G2), 280 m (G3), 340 m (G4), and

400 m (G5).

For the Cold Lake area, the velocity model utilized in the forward modeling

portion of the source location algorithm is defined as follows:

Figure 13

The MEDKF’s full waveform state x2 estimates resulting from the input illustrated in Figure 13. The

vertical lines identify the MEDKF’s first break estimates.

Figure 12

Seismic time series responses from a linear five component triaxial multi-element geophase array due to

sensor orientation calibration shot. The vertical lines identify the MEDKF’s first break estimates.

b
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Figure 12 shows the seismic time series plots obtained from the previously

described linear five component triaxial geophone array whose orientation is being

derived from a calibration shot. Figure 13 illustrates the corresponding q(t)MEDKF

time series estimates. The first break arrival times are determined by moving back

from the maximum values within the q(t)MEDKF time series until the

q(tfirst break)MEDKF amplitudes are within 20% of the maximum q(t)MEDKF ampli-

tudes. The accurately estimated MEDKF automated first break arrival times are

shown in Figures 12 and 13 by vertical lines.

Figure 14 illustrates the time series from the linear array sondes generated by a

microseismic event occurring on 14th July, 10:05:17. The G1 sonde responses have

been omitted because they only contained ambient noise. Figure 15 illustrates the

MEDKF full waveform estimates for the first breaks of the P-wave phases while

Figure 16 shows the MEDKF full waveform arrival time estimates for the S-wave

phases. The MEDKF P-wave filter dominant frequency was set to 290 Hz with a

�100 Hz frequency tolerance, while the MEDKF S-wave filter dominant frequency

was set to 60 Hz with a �60 frequency tolerance. The frequency tolerance parameter

allows for the MEDKF to take into account source signal frequency attenuation as

the wavelet travels to each sonde.

Figure 17 shows the 14th July, 10:05:17 microseismic event time series with the

accurate MEDKF estimated P-wave and S-wave first break estimates superimposed.

Based upon the MEDKF P-wave first break estimates and carrying out automated

hodogram analysis, the optimal estimate of the source azimuth plane is N 80
 E with

a root-mean-square (RMS) error of 2
. The source location is calculated to be 69 m

east, 12 m north, and 400 m in depth with an overall RMS positional error on the

azimuth plane of 2.0 m.

Figure 18 illustrates the solution space P-wave time difference hyperbolas and P-

S-wave time separation solution spaces based upon the arrival times illustrated in

Figure 17. The optimal source location is also superimposed onto Figure 18 where

the source range is calculated to be 70 m. As is shown in Figure 18, the source

location estimate resides within the cluster of intersections of the P-wave hyperbolas

Table 2

Cold Lake Two Layer Velocity Model

Layer Elevation P-wave velocity S-wave velocity

Top 0.0 m to 325 m 2000 m/sec 660 m/sec

Bottom >325 m 2200 m/sec 1000 m/sec

Figure 14

Acquired seismic time series from the linear array sondes generated by the microseismic event of 23rd May,

13:58:11.

c
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and the P-S wave arrival time separation solution spaces within the microseismic

source azimuth plane. Figure 19 shows an expanded view of Figure 18. Figures 18

and 19 demonstrate that there is an excellent correlation between the derived

hyperbolas and P-S wave arrival time separation solution spaces. Simplistically, the

correlations indicate that there is an extremely high probability that the source lies at

Figure 15

MEDKF’s estimated P-wave full waveform first break estimated from the input illustrated in Figure 15.

Figure 16

MEDKF’s estimated S-wave full waveform first break estimated from the input illustrated in Figure 15.

c
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a depth of between 395 m and 400 m and is between 70 m and 75 m from the

borehole on a bearing of N 80
 E.

Figure 17

14th July 10:05:17 microseismic event P-wave and S-wave first break estimates based upon results

illustrated in Figures 16 and 17.
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4. Conclusions

The principle purpose of most microseismic monitoring systems is to provide

reliable estimates of the real time location of the seismic events. In highly seismically

active areas with significant ambient noise present, it is of paramount importance

that microseismic monitoring systems have the capability of automating the

Figure 18

Illustration of the P-wave arrival time difference hyperbolas and P-S wave arrival time separation solution

spaces for the 14th July, 10:05:17 microseismic event. Shown on the source azimuth plane bearing N 80
 E.
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identification of P-wave and S-wave seismic events within the noise contaminated

raw seismic time series. This allows for the timely analysis of large volumes of data.

The ability to locate accurately microseismic events is directly dependent upon the

ability to identify the P-wave and S-wave responses (phase association) and

determine subsequent arrival times (phase picking).

These data are utilized in the microseismic source location algorithms which

typically implement forward modeling and iterative optimal estimation techniques in

which a global minimum of a predefined cost function is determined within the three-

dimensional solution space. This paper has summarized some of the mathematical

improvements being made to current microseismic event detection Kalman Filter

Figure 19

Enlargement of source area shown in Figure 18.
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design and the ability to automate P-wave first break identification so that the event

location solution space is kept to a minimum.

The ultimate objective is to provide reliable analytical procedures which will

enable microseismic monitoring systems to be routinely used in production

situations. Once this is achieved, operators will have available a tool which will

enhance both safety and the cost effectiveness of many production processes.
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