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Abstract—Among engineers there is considerable interest in

the real-time identification of ‘‘events’’ within time series data with

a low signal to noise ratio. This is especially true for acoustic

emission analysis, which is utilized to assess the integrity and

safety of many structures and is also applied in the field of passive

seismic monitoring (PSM). Here an array of seismic receivers are

used to acquire acoustic signals to monitor locations where seismic

activity is expected: underground excavations, deep open pits and

quarries, reservoirs into which fluids are injected or from which

fluids are produced, permeable subsurface formations, or sites of

large underground explosions. The most important element of PSM

is event detection: the monitoring of seismic acoustic emissions is a

continuous, real-time process which typically runs 24 h a day,

7 days a week, and therefore a PSM system with poor event

detection can easily acquire terabytes of useless data as it does not

identify crucial acoustic events. This paper outlines a new algo-

rithm developed for this application, the so-called SEEDTM (Signal

Enhancement and Event Detection) algorithm. The SEEDTM

algorithm uses real-time Bayesian recursive estimation digital

filtering techniques for PSM signal enhancement and event

detection.

Key words: Passive (micro-) seismic monitoring, real-time

event detection, Kalman filter, Hidden Markov models.

1. Introduction

A passive seismic monitoring (PSM) system is an

assembly of hardware and software components

designed to acquire and analyse, in real-time, the

acoustic signals collected by an array of appropriate

seismic transducers. Systems are generally installed

in areas where seismicity has been induced by human

activity (such as in the vicinity of underground

excavations, deep open pits and quarries, around and

below large reservoirs where fluids are being injected

into, or removed from, permeable subsurface forma-

tions, and adjacent to the sites of large underground

explosions (GIBOWICZ and KIJKO, 1994)). Passive

seismic monitoring systems are generally classified as

microseismic systems if they are designed to measure

moment magnitudes less than 0.0 Mn, while systems

that record events of stronger magnitude are referred

to as macroseismic monitoring systems.
Passive seismic systems are capable of detecting

rock failures in the vicinity of underground excava-

tions caused by the sudden release of strain energy

resulting from the redistribution of stresses around

openings (GIBOWICZ and KIJKO, 1994; TALEBI et al.,

1994).

Various hydrocarbon production sites also benefit

from seismic monitoring systems during certain

phases of production. Primary or secondary extrac-

tion or the injection of material into the reservoir to

enhance production can cause significant stress

changes. These stress changes can result in failures of

the overlying strata and the migration of hydrocar-

bons to aquifers or to the ground surface. Thus, PSM

can be used to satisfy environmental concerns, meet

regulatory requirements and assess the development

of induced fracturing within the reservoir. In addition,

passive seismic monitoring systems have been suc-

cessful in identifying and locating casing failures due

to steam stimulation in oil sands (TALEBI et al., 1998).

During filling of hydroelectric or large irrigation

reservoirs, changes in regional loading and pore

pressures cause significant stress variations within the

surrounding rock mass. These can induce a wide

range of micro- and macroseismic events, some of

which are capable of causing damage to adjacent

structures or to the dam itself. PSMs can locate and

characterize these potentially hazardous induced

events.
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In regions where the level of induced seismicity is

high and it is accompanied by significant ambient

noise, it is essential that the passive monitoring sys-

tems possess the capability of automatically

identifying the P- and S-waves generated by seismic

events within the noise contaminated raw seismic

time series. Reliable automated identification allows

for the timely analysis of a large volume of data and

the delivery of results to the end user in a useful

manner. The ability to locate passive seismic events

accurately is directly dependent upon the ability to

identify the P- and S-wave responses (phase associ-

ation) and determine subsequent arrival times (phase

picking) (GE and KAISER, 1992).

PSM consists of four elements:

• system specification (e.g., type of sensors, orien-

tation and location) (GE and HARDY, 1988)

• event detection

• source location estimation

• source parameter estimation (e.g., attenuation,

seismic moment, source radius, static stress drop,

peak particle velocity, seismic energy and failure

mechanism) (TALEBI and BOONE, 1998).

The most important of these elements is obviously

event detection: the monitoring of seismic acoustic

emissions is a continuous, real-time process which

typically runs 24 h a day, 7 days a week, and there-

fore a PSM system with poor event detection can

easily acquire terabytes of useless data as it does not

identify crucial acoustic events.

PSM event detection consists generally of two

steps:

1. Apply a digital filter to the acquired seismic data

to increase the signal/noise ratio (S/N).

2. Calculate the short term average/long term aver-

age ratio (STA/LTA): if this ratio exceeds a user

specified threshold then an event is assumed to

have occurred and the seismic data is stored.

This paper outlines a PSM real-time event

detection filter, which builds upon previous designs

(BAZIW, 2005; BAZIW and ULRYCH, 2004; BAZIW and

WEIR-JONES, 2002, BAZIW et al., 2004) in fitting the

PSM event detection filter into a Bayesian recursive

estimation (BRE) formulation and modeling of the

source wavelet as an amplitude modulated sinusoid

(AMS) (BAZIW, 2005, 2007a, b, 2011; BAZIW and

WEIR-JONES, 2002, 2004; BAZIW and ULRYCH, 2006;

BAZIW et al., 2004). The event detection filter, the so-

called SEEDTM (Signal Enhancement and Event

Detection) algorithm, is designed to identify fre-

quency anomalies within a statistically describable

noise model in real-time from seismic data acquired

from any type of seismic receiver, such as geophones

or accelerometers, and utilizes Bayesian recursive

estimation to characterize a recorded seismogram in

real-time. The real seismic quantities which are

characterized are background noise and, if present, a

seismic source wavelet ‘‘event’’ (P-wave and/or

S-wave). The SEEDTM characterizes these seismic

source wavelets as frequency anomalies embedded

within background noise, and these anomalies are

then compared to a user specified P-wave and S-wave

frequency window to assess whether the identified

frequency transient is a P-wave, S-wave, or transient

noise.

In the original design of the SEEDTM algorithm

(BAZIW and ULRYCH, 2004; BAZIW and WEIR-JONES,

2002; BAZIW et al., 2004) a single Kalman filter (KF)

formulation was utilized to model the seismogram’s

background noise and possible embedded seismic

event(s). This KF formulation required a priori

knowledge of the dominant frequency of the seismic

source wavelet generated when a microseismic

‘‘event’’ occurred. The single KF SEEDTM algorithm

would demonstrate poor performance if the source

wavelet dominant frequency didn’t match the user

specified value. To circumvent this shortcoming, a

variant of the SEEDTM algorithm was outlined by

BAZIW (2005). In this filter formulation algorithm a

Rao-Blackwellised particle filter (RBPF) and a jump

Markov linear Gaussian system (JMLGS) is intro-

duced into the SEEDTM algorithm where changes

(i.e., jumps) in the state-space system and measure-

ment equations are due to the occurrences and losses

of events within the measurement noise. Significant

limitations of the RBPF SEEDTM algorithm are that it

introduces considerable complexity into the seismic

event detection algorithm, and correspondingly

requires a significant increase in computational time.

To overcome the above described SEEDTM algorithm

limitations, a new formulation is outlined in this

paper, with only a single hidden Markov filter applied
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on a bank of Kalman filters to obtain robust results

within significantly reduced computational time

requirements ([70 %).

This paper will discuss this algorithm and provide

practical examples to demonstrate that the SEEDTM

algorithm provides considerable signal enhancement

and event detection advantages when processing

PSM seismic data, such as: (1) the ability to identify

source wavelet ‘‘events’’ embedded in high variance

and correlated noise environments; (2) significant

S/N improvement; (3) source wavelet arrival time

estimation; (4) the ability to derive noise statistics;

and (5) dominant frequency estimation.

2. The SEEDTM Algorithm

As stated previously, the SEEDTM algorithm uses

real-time BRE digital filtering techniques to analyze

the raw PSM data. BRE incorporates the different

mathematical tools and concepts of Kalman filter

(KF), jump Markov linear Gaussian systems, hidden

Markov model (HMM) filter, particle filtering (PF),

and Rao-Blackwellised particle filtering (RBPF).

Another fundamental component of the SEEDTM is

modeling of the source wavelet as an amplitude

modulated sinusoid (AMS).

2.1. Bayesian Recursive Estimation

In the Bayesian approach to optimal estimation, it

is attempted to construct the posterior estimate of the

state given all available measurements (ARULAMPA-

LAM et al., 2002). The state or state vector denotes the

desired parameters or variables obtained from noisy

measurement instrumentation (such as the isolated

seismic source wavelet from a noisy seismogram). In

general terms, it is desired to obtain estimates of the

discretized system equation states xk based on all

available measurements up to time k (denoted as z1:k)

by constructing the posterior p(xk |z1:k) and having the

initial (prior) pdf of the state p(x0) specified as an

initial condition. The posterior pdf allows the condi-

tional mean estimate of the state (E[xk|z1:k]) to be

calculated. The posterior pdf is represented as

posterior = likelihood 9 prior/evidence where the

evidence is the normalizing constant in the

denominator.

Bayesian recursive estimation (BRE) refers to the

case where a new estimate of the posterior pdf and

corresponding conditional mean estimate of the state

or state vector is derived for every new measurement.

BRE is an optimal filtering technique which is based

on state-space, time-domain formulations of physical

problems. The terminology, state-space, refers to

denoting the desired parameters or variables as states

and the physics of the problem (e.g., seismic source

wavelet) and corresponding measurement equa-

tion(s) (e.g., seismic receiver providing P-wave and

S-wave measurements) as the space. The main

advantages of utilizing a state-space formulation in

describing physical problems is three-fold. (1) Time

variance of the system and measurement dynamics

and statistics can readily be accounted for. (2)

Complicated time variant measurement noise models

can easily be incorporated into the measurement

equations. (3) The ability to utilize process or system

noise to compensate for errors in the mathematical

model of the system dynamics.

Application of BRE requires that the dynamics of

the system and measurement model which relates the

noisy measurements to the system state equations be

describable in a mathematical representation and

probabilistic form which, with initial conditions,

uniquely define the system behaviour.

The potentially nonlinear discrete stochastic

equation describing the system dynamics is defined

as follows:

xk ¼ fk�1 xk�1; uk�1ð Þ $ p xkjxk�1ð Þ ð1Þ

In (1), the vector fk is a function of the state vector

xk and the process or system noise uk. It is assumed

that (1) describes a Markov process of order one. The

system or process noise uk allows the filter designer

to incorporate uncertainty within the system model.

Notation p xkjxk�1ð Þ denotes the probability of obtain-

ing the state or state vector x at time index k given

only the state value at time index k – 1. This is

directly related to the prior within the posterior pdf

calculation.

The sampled potentially nonlinear measurement

equation is given as:
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zk ¼ hkðxk; vkÞ $ p zkjxkð Þ ð2Þ

In (2), hk depends upon the index k, the state xk,

and the measurement noise vk at each sampling time.

Notation p zkjxkð Þ denotes the likelihood of the

measurement at time index k given the state or state

vector x at time index k. This is directly related to the

likelihood within the posterior pdf calculation.

The probabilistic state-space formulation described

by (1) and the requirement for updating the state vector

estimate based upon the newly available measure-

ments described by (2) are ideally suited for the

Bayesian approach to optimal estimation.

BRE is a two step process consisting of prediction

and an update model (ARULAMPALAM et al., 2002). In

the prediction step the system equation defined by (1)

is used to obtain the prior pdf of the state at time k via

the Chapman–Kolmogorov equation, which is given

as

pðxkjz1:k�1Þ ¼
Z

p xkjxk�1ð Þp xk�1jz1:k�1ð Þdxk�1 ð3Þ

The Chapman–Kolmogorov is derived based upon

the transitional densities of a Markov sequence. The

update step computes the posterior pdf from the

predicted prior pdf and a newly available measure-

ment. The posterior pdf is updated via Bayes’ rule as

follows:

pðxkjz1:kÞ ¼
pðzkjxkÞpðxkjz1:k�1Þ

p zkjz1:k�1ð Þ ð4Þ

The recurrence equations defined by (3) and (4)

form the basis for the optimal Bayesian solution. The

BRE of the posterior density can be solved optimally

when the state-space equations fit into a Kalman filter

formulation or a hidden Markov model. Otherwise,

the BRE requires a sub-optimal numerical estimation

(e.g., particle filter (ARULAMPALAM et al., 2002;

BAZIW, 2007a, b, 2011; DOUCET et al., 2000, 2001))

when deriving the posterior pdf.

2.1.1 Kalman Filter

As previously stated, the standard set of KF equations

can be implemented as an optimal solution to the BRE

when the following conditions are met: uk and vk are

zero mean independent Gaussian white noise

processes, fk is a linear function of the state vector

and process noise, hk is a linear function of the state

vector and measurement noise, and the initial estimate

of x0 has a Gaussian distribution (BAZIW, 2007a;

ARULAMPALAM et al., 2002; GELB, 1974). The index i

denoted in Table 1 facilitates the implementation of a

bank of Kalman filters when implementing a particle

filter formulation model (BAZIW, 2007a; ARULAMPALAM

et al., 2002; DOUCET et al., 2000, 2001).

In Table 1, xk denotes the state to be estimated,

Fk-1 denotes the state transition matrix which

describes the system dynamics, uk-1 denotes the

process or system noise (model uncertainty), Gk-1

describes the relationship between xk and uk-1, and

Hk defines the relationship between the state and the

available measurement (seismogram time series). The

implementation of (5) to (14) is outlined in detail by

BAZIW (2005, 2007a) and BAZIW and WEIR-JONES

(2002, 2004) and GELB, (1974). In general terms, (7)

and (9) are used to predict the state and measurement,

the innovation (10) is then calculated (difference

between the actual measurement and predicted mea-

surement) and the state is updated by adding the

predicted value (7) with the weighted innovation (13).

The computational sequence of the KF is outlined

as follows:

A. At time index k = 0, specify initial conditions x̂0

(where E½x0� ¼ x
_

0) and P0 (where

E x0 � x
_

0

� �
x0 � x

_

0

� �T
� �

¼ P0) and compute F0

and Q0.

Table 1

KF governing equations for JMLGS

Description Mathematical representation Eq.

System equation xi
k ¼ Fi

k�1xi
k�1 þ Gi

k�1ui
k�1 (5)

Measurement equation zi
k ¼ Hi

kxi
k þ vi

k (6)

State estimate extrapolation x̂i
kjk�1 ¼ Fi

k�1x̂i
k�1jk�1 (7)

Error covariance

extrapolation
Pi

kjk�1 ¼ Fi
k�1Pi

k�1jk�1FiT

k�1

þ Gi
k�1Qi

k�1jk�1GiT

k�1

(8)

Measurement extrapolation ẑi
k ¼ Hi

k�1x̂i
kjk�1 (9)

Innovation Di
k ¼ zi

k � ẑi
k (10)

Variance of innovation Si
k ¼ Hi

kPi
kjk�1HiT

k þ Ri
k (11)

Kalman gain matrix Ki
k ¼ Pi

kjk�1Hk Si
k

� ��1
(12)

State estimate update x̂i
kjk ¼ x̂i

kjk�1 þ Ki
kD

i
k (13)

Error covariance update Pi
knk ¼ I � Ki

kH yi
k

� �� 	
Pi

kjk�1 (14)

In (5) and (6) vk and uk are i.i.d Gaussian zero mean white noise

processes with variances of Qk and Rk, respectively (i.e.,

vk �Nð0;RkÞ and uk �N 0;Qkð Þ)
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B. At time index k = 1, computer x̂1j0, P1j0, H1, R1

and the gain matrix K1.

C. Using the measurement z1at time index 1, the best

estimates of the state at k = 1 is given by

x̂1j1 ¼ x̂1j0 þ K1D1.

D. Update the error covariance matrix P1j1.

E. At time index k = 2, a new measurement is

z2obtained and the computational cycle is

repeated.

2.1.2 Hidden Markov Model Filter

The Hidden Markov Model Filter (HMM filter (also

termed a grid-based filter) has a discrete state-space

representation and has a finite number of states. In the

HMM filter the posterior pdf is represented by the

delta function approximation as follows:

p xk�1jz1:k�1ð Þ ¼
XNs

i¼1

wi
k�1nk�1d xk�1 � xi

k�1

� �
ð15Þ

where xi
k�1and wi

k�1jk�1; i = 1,…,Ns, represent the

fixed discrete states and associated conditional

probabilities, respectively, at time index k - 1, and

Ns defines the number of particles utilized. The

governing equations for the HMM filter are derived

by substituting (15) into the Chapman–Kolmogorov

equation (3) and the posterior pdf update Eq. (4). This

substitution results in the HMM prediction and

update equations which are outlined in Table 2

(ARULAMPALAM et al., 2002). The term particle refers

to a possible state value. For example, if the possible

dominant frequencies of a sinusoid are 100–300 Hz

in increments of 0.5 Hz; then there are (300–100)/

0.5 = 400 possible value or particles. The HMM

filter weights each one of these particles as outlined

(17) and (18) with the optimal minimum variance

estimate of the state or state vector given by summing

the weighted particles as outlined in (19).

2.1.3 Particle Filter

As stated previously, the recurrence equations

defined by (3) and (4) form the basis for the optimal

Bayesian solution, and except for the KF and HMM

exact solutions the BRE requires a sub-optimal

numerical estimation approach. To solve the BRE

numerically a new family of filters which rely upon

sequential Monte Carlo methods have been made

popular within the last decade. This family of new

filters are most commonly referred to as particle

filters (BAZIW, 2007a; ARULAMPALAM et al., 2002;

DOUCET et al., 2000, 2001).

Similar to the HMM filter, the PF represents the

posterior pdf by the delta function approximation, but

in this case a randomized grid is utilized for the

estimation of the posterior pdf. For the PF, the

weights in (15) are obtained using Bayesian impor-

tance sampling and a typical PF algorithm is

referred to as sequential importance sampling (SIS)

(ARULAMPALAM et al., 2002).

2.2. Amplitude Modulated Sinusoid

In all variations of the SEEDTM algorithm, an

innovative model of the source wavelet is utilized.

This source wavelet model is referred to as the

Table 2

HMM filtering algorithm

Step Description Mathematical representation Eq.

1 Initialization (k = 0)—initialize particle weights e.g., wi
k � 1=Ns, i = 1,…,Ns (16)

2 Prediction—predict the weights wi
knk�1 ¼

PNs

j¼1 w
j
k�1nk�1

p xi
kjx

j
k�1

� �
(17)

3 Update—update the weights wi
knk ¼

wi
knk�1

p zk jxi
kð ÞPNs

j¼1
w j

knk�1
p zk jx j

kð Þ (18)

4 Obtain optimal minimum variance estimate of the state vector and

corresponding error covariance

x̂k �
PNs

i¼1 wi
kjkxi

k & Px̂k
�
PNs

i¼1 wi
kjk xi

k � x̂k

� �
xi

k � x̂k

� �T
(19)

5 Let k = k ? 1 and iterate to step 2

In the above equations it is required that the likelihood pdf p zkjxi
k

� �
and the transitional probabilities p xi

kjx
j
k�1

� �
be known and specified
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amplitude modulated sinusoid (AMS) (BAZIW, 2005,

2007a, b, 2011; BAZIW and ULRYCH, 2004, 2006;

BAZIW and WEIR-JONES, 2002; BAZIW et al., 2004).

The AMS is demonstrated to be a highly robust and

accurate approximation for many analytical repre-

sentations of seismic source wavelets such as the

exponentially decaying cyclic waveform, the mixed-

phase Berlage wavelet, the zero-phase Ricker wave-

let, and the zero-phase Klauder wavelet. In addition,

the AMS wavelet has proven very accurate in

modeling seismic data acquired during passive seis-

mic monitoring and vertical seismic profiling.

The mathematical representation of the AMS

source wavelet is given as

x1ðtÞ ¼ x2ðtÞ sin½xt þ u� ð20Þ

where x1(t) is an approximation to the seismic source

wavelet, x2(t) is the seismic wavelet’s amplitude

modulating term (AMT), x is the dominant fre-

quency of the wavelet, and u is the corresponding

phase.

BAZIW (2007a, b) outlines the robustness of the

AMS model by considering the zero phase Ricker

wavelet. The Ricker wavelet is mathematical repre-

sented in the time-domain as

f ðtÞ ¼ A0 1� 2p2v2
M t � t0ð Þ2

� �
exp�p2v2

M t�t0ð Þ2 ;

t� t0

ð21Þ

where A0 : wavelet maximum amplitude (centered

between to flanking lobes), vM : dominant or peak

frequency of the Ricker wavelet, and t0 : wavelet

arrival time of maximum amplitude. Although, the

Ricker wavelet has a peak frequency, it doesn’t have

a specific sinusoidal term and as was shown by BAZIW

(2006, 2007a) the AMS model was able to recon-

struct the desired wavelet by applying an appropriate

amplitude modulating term.

Another analytical model of the seismic source

wavelet is the Berlage wavelet (ALDRIGE, 1990). The

Berlage source wavelet is a preferred analytical

model of the seismic source wavelet for many

researchers due to the fact that mixed-phased source

wavelets are readily simulated. For example, Profes-

sor Tadeusz Ulrych has utilized Berlage source

wavelets extensively in his research and extensive

publications.

The Berlage wavelet is defined as

wðtÞ ¼ AHðtÞtne�at cosð2pft þ /Þ ð22Þ

where H(t) is the Heaviside unit step function

[H(t) = 0 for t B 0 and H(t) = 1 for t [ 0]. The

amplitude modulation component is controlled by

two factors: the exponential decay term a and the

time exponent n. These parameters are considered to

be nonnegative real constants. Figure 1 illustrates a

Berlage wavelet with f = 55 Hz, n = 2, a = 168,

and / = 168� Superimposed upon this Berlage

wavelet is a scaled 55 Hz sinusoid with zero crossing

at 11.2 ms. As is evident from Fig. 1, the Berlage

source wavelet is an amplitude modulated sinusoid

AMINI and HOWIE (2005) utilized a finite differ-

ence program (FLAC) to model down-hole seismic

source wavelets. BAZIW (2007a, 2011) illustrates that

the AMS source wavelet is an ideal analytical model

Figure 1
Berlage wavelet with superimposed 55 Hz sinusoid
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for the source wavelet generated by Amini and

Howie.

The ability of the analytical AMS source wavelet

to model real data is demonstrated with downhole

seismic data captured during a seismic cone penetra-

tion test (SCPT) (CAMPANELLA et al., 1986, BAZIW,

1993). The seismic sensors utilized were high

precision and high bandwidth (1 Hz to 10 kHz)

piezoelectric accelerometers, which have highly

desirable rise and decay times of approximately

5 ls. These fast rise and decay times result in

recorded traces where the input of acoustic wavelets

and ambient noise are recorded with minimal, if any

sensor distortion.

Figure 2 illustrates noisy SCPT data recorded at a

depth of 15 m. The high noise energy is due to high

frequency rod noise traveling down the steel

extension rods and due to the close radial proximity

of the source. Figure 3 illustrates the seismic data

shown in Fig. 2 superimposed upon the same seismic

trace filtered with a zero phase shift 8th order

Butterworth 10–150 Hz bandpass filter applied. Also

superimposed upon the filtered seismic trace is a

73 Hz sinusoid. As is evident from Fig. 3, the real

SCPT source wavelet can be modeled as amplitude

modulated sinusoid.

2.3. Gauss–Markov Measurement Noise Model

To facilitate greater source wavelet and measure-

ment noise characterization the measurement noise is

modeled as a Gauss–Markov process as opposed to

simply being defined by a band of frequencies. By

analyzing the autocorrelation and power spectrum of

Figure 2
AMS real data example recorded during a SCPT

Figure 3
Seismic trace in Fig. 2 filtered with a 10–150 Hz frequency filtered applied and a 73 Hz sinusoid superimposed
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a large number of PSM measurement noise time

series it was possible to identify a mathematical model

which sufficiently fits the PSM measurement noise

process. Figure 4 illustrates the autocorrelation func-

tion and power spectral density of common random

processes (GELB, 1974) and represents the time corre-

lation of the processes independent of the pdf of the

amplitude distribution. A Gauss–Markov process can

be used to describe many physical phenomena (BAZIW,

2005; BAZIW and ULRYCH, 2004; BAZIW and WEIR-

JONES, 2002; BAZIW et al., 2004)) and is a good

candidate to model the PSM background noise.

The Gauss–Markov process has a relatively

simple mathematical description. As in the case of

all stationary Gaussian processes, specification of the

process autocorrelation completely defines the pro-

cess. The variance, r2, and time constant, Tc (i.e.,

b = 1/Tc), define the first-order Gauss–Markov pro-

cess. The time constant, Tc, reflects and is directly

proportional to the level of correlation between

samples. These parameters are derived from the

seismic time series by windowing on the noise

portion of the trace and calculating the autocorrela-

tion of the ambient noises phenomena (BAZIW, 2005,

2007a, b, 2011; BAZIW and ULRYCH, 2006; BAZIW and

WEIR-JONES, 2002; BAZIW et al., 2004). The discreet

mathematical equation for a Gauss–Markov process

is given as

nkþ1 ¼ awnk þ bwwk

aw ¼ e�bD and bw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2bD
p ð23Þ

In Eq. (23), D is the sampling rate and wk is a

zero-mean, timewise-uncorrelated, unit-variance

sequence with a Gaussian probability distribution

function. nk is therefore a zero-mean, exponentially

correlated random variable whose standard deviation

is r. The constant aw can have a range of values from

-1 to ?1. For a stable variable, aw is restricted to

values between 0 and ?1. For aw ? 0, nk changes

rapidly and tends to be uncorrelated from sample to

sample. For aw ? 1, the behavior of nk becomes

more sluggish and it tends to change little from

sample to sample.

2.4. SEEDTM Algorithm Design and Configuration

As previously outlined, the SEEDTM algorithm

uses real-time BRE for PSM signal enhancement and

event detection. As a first step the SEEDTM algorithm

applies a bank of finite sinusoids (i = 1 to N) with

dominant frequencies varying from low (fL) to high

(fH) (e.g., 30–430 Hz) and a corresponding frequency

resolution fR. Each sinusoid represents a possible

oscillating term of a source wavelet generated from a

seismic event. When a microseismic event occurs the

resulting seismic source wavelet is then approximated

as an AMS, whereby the sinusoid is modulated by an

amplitude modulating term (AMT). As illustrated in

Fig. 5, a fixed set of possible sinusoids with corre-

sponding dominant frequencies is specified at the

outset. Again, these sinusoids represent the oscillating

terms of P-waves and/or S-waves generated from a

microseismic event. Next a bank of Kalman Filters are

utilized. The KF system equations include the AMT

components which are modeled as a two state first

order Taylor series with the velocity component

represented by a Gauss–Markov process. The KF

measurement equations incorporate the sinusoidal

components sin(xit) where xi = 2pfi and fi is the

dominant frequency. The frequency components are

incorporated as states within a HMM filter formula-

tion. The background noise is also included within the

φProcess Autocorrelation Function Power Spectral Density Φ

White
Noise

Markov
Process

Sinusoid

Random Bias

φXX(τ) =φ0δ(τ) τ
ΦXX = φ 0

φ XX(τ) =σ2 -β |τ| ΦXX = 2βσ 2 /(ω+β2)

φXX(τ) = (A2/2)cosω1 τ ΦXX=(π/2)A2[δ(ω-ω1) + δ(ω+ω
1)]

φ XX(τ) = m2 ΦXX = 2πm2δ(ω)

φ 0

2σ2/β

A2/2

-ω1 ω1

m2

τ

τ

τ

ω

ω

ω

ω

Figure 4
Description of common random processes (13)
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KF system equations through the Gauss–Markov

process. The required number of KFs and correspond-

ing HMM states is defined asNs = (fH - fL)/fR. In

addition there is an added KF and HMM state when no

source wavelet is present within the seismogram, but

only measurement noise (i.e., x0 = f0 = 0).

For each frequency component, fi, in the HMM

filter, there is the following three state KF formulation

xi
1 kþ1

xi
2 kþ1

xi
3 kþ1

2
4

3
5 ¼

1 D 0

0 a2 0

0 0 a3

2
4

3
5

þ
0 0 0

0 b2 0

0 0 b3

2
4

3
5 0

ui
2kþ1

ui
3kþ1

2
4

3
5 ð24Þ

In (24) state x1 denotes the AMT component of

the AMS source wavelet, state x2 denotes the rate of

change of state x1, x3 denotes the Gauss–Markov

background noise, a2, a3, b2 and b3 are the Gauss–

Markov parameters defined in (23), u2 denotes white

Gaussian process noise with mean 0 and variance 1,

u3 denotes white Gaussian measurement noise with

mean 0 and variance 1 and D is the sampling rate.

The SEEDTM algorithm models the AMTs (state

x1) of the AMS source wavelet with a first order

Taylor series approximation. The AMT is forced to

be positive by modifying the state estimate extrap-

olation equation ((7) of Table 1) so that

x̂i
kjk�1 ¼ Fi

kx̂i
k�1jk�1

���
��� for state x1. The AMT is set

positive and the seismogram is also normalized so

that events of varying magnitudes can be processed

identically (identical Gauss–Markov parameters for

state x2 for the bank of KFs) and the sinusoidal term

of the AMS accounts for source wavelet oscillations.

The rate of change term (state x2) is approximated as

a Gauss–Markov processes.

As previously outlined, the variance, r2, and time

constant, Tc, define the first-order Gauss–Markov

process. The time constant terms (Tc2 where

a2 ¼ e�D=Tc2 ) of state x2 is an important and very

robust parameter within the SEEDTM algorithm.

Preferably state x2 results in a smooth trajectory of

the amplitude modulation term of the AMS while at

the same time allowing for sufficient manoeuvrability

so that the AMS source wavelet follows the oscilla-

tions of the sinusoid. This parameter is very robust

and values of approximately a2 = 0.99 are found to

work very well for modeling a variety of PSM

seismic source wavelets.

In specifying the variances of states x2, the

SEEDTM algorithm identifies the approximate max-

imum rate of change within the normalized seismic

time series for a typical seismic source wavelet. The

SEEDTM algorithm then sets r2
2 to one-ninth of the

square of this maximum. Similar to parameter a2, the

SEEDTM algorithm responds very robustly to minor

variation in parameter b2.

For each frequency component, fi, in the HMM

filter, there is the following KF measurement

equation

•
•
•

•
•
•

•
•
•

Figure 5
SEEDTM algorithm configuration
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Figure 6
Berlage source wavelet with dominant frequency of 100 Hz

Figure 7
a Synthetic seismogram with source wavelet of Fig. 6 embedded in ambient noise; b derived AMT using the SEEDTM algorithm; c derived

STA/LTA using the SEEDTM algorithm; d estimated frequencies when STA/LTA threshold of 1.2 exceeded using the SEEDTM algorithm
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zi
k ¼ xi

1 sin xi
1t

� �
þ vk; where t ¼ kD ð25Þ

In (25), vk represents the KF measurement noise

which is set to a fraction (1%) of the Gauss–Markov

noise (state x3) because the Gauss–Markov noise already

takes into account background measurement noise

(note:Hi
k ¼ sin xi

kt
� �

0 0
� 	

for (9) in Table 1).

The transitional probabilities (i.e., p xi
kjx

j
k�1

� �
or

p f i
kjf

j
k�1

� �
) for each state (i.e., frequency component

fi, and corresponding KF) in the HMM (Table 2) is

set relative high for moving from ‘‘event’’ (back-

ground noise ? source wavelet present) to ‘‘non-

event’’ (background noise only present) (i.e.,

p f 0
k jf

j
k�1

� �
) and vice versa p f i

kjf 0
k�1

� �
. In addition,

only the three closest transitional probabilities are

specified and calculated, since the dominant fre-

quency is not expected to jump significantly when

moving from event to non-event and vice versa. This

assumption also results in a significantly reduced

computation time.

The likelihood pdf p zkjxi
k

� �
in the HMM filter

outlined in Table 2 is calculated based upon an

assumed Gaussian measurement error as follows:

p zkjxi
k

� �
¼ 1ffiffiffiffiffiffiffiffi

2pr
p e

�
zk�x̂i

1k
sin xi

1
tð Þð Þ2

2r2

� �
ð26Þ

where r2 = Si
k½1; 1� ((11) in Table 1 (variance of

innovation for state x1 (AMT)) and x̂i
1k ((7) in Table 1

(state estimate extrapolation)) are obtained from the

associated KF.

The background noise parameters of variance, r2,

and time constant, Tc, are automatically derived from

the recorded seismic data by windowing on the noise

portion and calculating the autocorrelation. For exam-

ple, on the initiation of the PSM the data acquisition

Figure 8
a Synthetic seismogram with source wavelet of Fig. 6 embedded in ambient noise; b output after applying an eight-order zero phase bandpass

(30–150 Hz) to seismogram in (a); c derived STA/LTA of filtered trace
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commences acquiring data at the user specified

sampling rate D. A user specified ring buffer of

approximately 9,000 points is populated with seismic

data and divided into three time windows (e.g., 3,000

points). The variance of each time window is calcu-

lated and the window with the lowest variance value is

defined to be ambient noise. An auto-correlation is

automatically calculated on the ambient noise where

the parameters r2 and Tc are readily obtained. The

investigator should set the data acquisition ring buffer

to an appropriate size (time window) so that variability

of the background noise is sufficiently characterized.

The ring buffer of data with parameters r2 and Tc

is then fed into the SEEDTM algorithm for signal

processing and event detection. The SEEDTM algo-

rithm calculates the AMT component and the

dominant frequency of the AMS source if present.

The SEEDTM algorithm must complete filtering and

event detection within D 9 ring buffer size (e.g.

9,000 point ring buffer and sampling rate of 5 kHz

results in a maximum processing time of 1.8 s) prior

to extracting the next set of data from the ring buffer.

The HMM estimated AMT and dominant fre-

quency are calculated from (19) in Table 2 as follows:

Figure 9
a Synthetic seismogram with source wavelet of Fig. 6 embedded in ambient noise; b derived AMT using the SEEDTM algorithm; c derived

STA/LTA using the SEEDTM algorithm; d estimated frequencies when STA/LTA threshold of 1.2 exceeded using the SEEDTM algorithm
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x̂1k �
XNs

i¼1

wi
kjkxi

1k ð27Þ

f̂k �
XNs

i¼1

wi
kjkf i

k ð28Þ

In effect, the SEEDTM algorithm acts as a real-

time frequency–time–amplitude estimator.

When an ‘‘event’’ is detected the estimated

AMT and raw seismic data is stored to file at the

user specified sampling rate, sample time and user

pre-trigger. There are several parameters which

signify an ‘‘event’’ when processing the estimated

HMM AMT. The SEEDTM algorithm event detec-

tion is based upon the Short Term Average to Long

Term Average ratio (STA/LTA) of the estimated

AMT exceeding a user specified threshold. The

SEEDTM algorithm event detection parameters are

outlined as follows:

• Trigger Channels Required: the trigger channels

required parameter defines how many sensor

channels must see an ‘‘event’’ for it to be identified

as an overall PSM event.

• P- or S-wave STA/LTA Parameters.

The SEEDTM algorithm allows for the P-wave and

the S-wave trigger to be enabled with differing

STA/LTA parameters specified. For each wavelet

type the following parameters must be defined:

• Threshold Ratio the threshold for the STA/LTA

ratio for the P- or S-wave under analysis.

• STA Window [ms] STA Window length specified

in ms for the P- or S-wave under analysis.

• LTA Window [ms] LTA Window length speci-

fied in ms for the P-wave under analysis.

• P- or S-wave Dominant Frequencies

The dominant frequencies input parameters allow

the investigator to specify minimum f P
min or f S

min

� �

Figure 10
a Synthetic seismogram with source wavelet of Fig. 6 embedded in ambient noise; b output after applying an eight-order zero phase bandpass

(30–150 Hz) to seismogram in (a); c derived STA/LTA of filtered trace

Vol. 169, (2012) Event Detection with Bayesian Recursive Estimation 2119



and maximum f P
max or f S

max

� �
expected values for

the P- or S-wave dominant frequency. If the

Threshold Ratio is exceeded, the SEEDTM algo-

rithm then verifies that the estimated dominant

frequency f̂k resides within the P-wave and/or

S-wave frequency window.

• Min Frequency minimum P- or S-wave domi-

nant frequency f �min

� �
in Hz.

• Max Frequency maximum P- or S-wave domi-

nant frequency f �max

� �
in Hz.

• Maximum Amplitude Reduction Factor

The STA/LTA event detection algorithm is

dependent upon relative amplitudes values (ratio

calculation); therefore, there is no indication to

what extent the amplitudes have been decreased by

applying the SEEDTM algorithm. Consequently it is

possible that noise or filter anomalies of very low

magnitude (relative to unfiltered seismic data) are

present after filtering, due to the fact that there was

not a significant source wavelet present. To address

this, the Maximum Amplitude Reduction Factor

provides an additional level of event detection: if

the ratio between the Maximum Amplitude Unfil-

tered Signal/Maximum AMT exceeds this factor

then it is assumed that no ‘‘event’’ has occurred.

Figure 11
a Synthetic seismogram with source wavelet of Fig. 6 embedded in ambient noise with SEEDTM estimated arrival time, dominant frequency

and ambient noise statistics illustrated. b SEEDTM estimated AMT. c SEEDTM estimated STA/LTA. d SEEDTM estimated frequencies when

STA/LTA threshold of 1.2 exceeded
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This is a very robust parameter and a value

between 4 and 8 is typically used.

If the user specified threshold is exceeded, and both

the estimated frequency resides within a user specified

bandwidth (e.g., P-wave and S-wave bandwidth) and

the Maximum Amplitude Reduction Factor is not

exceeded, then an ‘‘event’’ is flagged and the time

location of the event (time location where STA/LTA

exceeds the user specified Threshold) is defined to be

the arrival time of the source wavelet.

3. SEEDTM Performance Results

3.1. Data Simulation

The performance of the SEEDTM algorithm is

assessed by considering challenging synthetic data.

Figure 6 illustrates a Berlage source wavelet (BAZIW,

2005; BAZIW and WEIR-JONES, 2002, 2004; BAZIW and

ULRYCH, 2006; BAZIW et al., 2004) with a dominant

frequency of 100 Hz, arrival time of 40 ms and

maximum absolute amplitude of 7.2.

3.1.1 Example 1 (r2 = 6 units2, Tc = 1 ms)

The source wavelet shown in Fig. 6 is embedded

within ambient noise with variance of six units2 and

time constant of 1 ms as illustrated in Fig. 7a. The

SEEDTM algorithm is then applied on the noisy

seismogram of Fig. 7a where a HMM frequency

bandwith and resolution of 30–430 and 2 Hz is

applied, respectively. A STA/LTA threshold of 1.2

was specified.

The SEEDTM estimated AMT and STA/LTA is

illustrated in Fig. 7b and c, respectively. Dominant

frequencies are estimated when the STA/LTA ratio

exceeds the threshold of 1.2 as shown in Fig. 7d.

Figure 7a shows the SEEDTM estimated noise statis-

tics (variance = 6.9 and time constant = 1 ms), the

Figure 12
a Synthetic seismogram with source wavelet of Fig. 6 embedded in ambient noise with variance of 12 units2 and time constant of 1 ms.

b Output after applying an eight-order zero phase bandpass (30–150 Hz) to seismogram in (a). STA/LTA of filtered trace in (b)
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averaged dominant frequency estimate (107.5 Hz

(true value = 100 HZ)—averaged over time window

where STA/LTA ratio exceeds the threshold of 1.2 as

is illustrated in Fig. 7d) and arrival time estimate

(denoted by vertical bar).

The impressive SEEDTM algorithm results out-

lined in Fig. 7 are compared with a standard

frequency filtering algorithm as illustrated in Fig. 8.

Figure 8b shows the seismogram of Figs. 7a and 8a

with an eight order digital bandpass (30–150 Hz)

filter applied. The STA/LTA of Fig. 8b is shown in

Fig. 8c. It is clear from comparing Fig. 8b and c with

Fig. 7b and c that the SEEDTM algorithm provided

considerable S/N improvement and allowed for

dominant frequency and noise statistics estimation.

3.1.2 Example 2 (r2 = 9 units2, Tc = 3 ms)

The source wavelet shown in Fig. 6 is embedded

within ambient noise with variance r2 of 9 units2 and

time constant Tc of 3 ms as illustrated in Fig. 9a. The

SEEDTM algorithm is then applied on this noisy

seismogram with a HMM frequency bandwith and

resolution of 30–430 and 2 Hz, respectively. A STA/

LTA threshold of 1.2 was specified. The resulting

AMT and STA/LTA is illustrated in Fig. 9b and c,

respectively. The SEEDTM algorithm also provides

the dominant frequencies when the STA/LTA ratio

exceeds the threshold of 1.2 as shown in Fig. 9d.

The results using the using the SEEDTM algorithm

can be compared with the outcome when using a

standard frequency filtering algorithm (applying an

eight order digital bandpass (30–150 Hz) filter) as

illustrated in Fig. 10. It is clear that SEEDTM

algorithm provides a considerable S/N improvement

compared to the standard frequency filtering. The

other aspect to be considered in this case is the

number of times the STA/LTA exceeds the specified

threshold: the analysis with the SEEDTM algorithm

indicates that there is only 1 event, whereas standard

frequency filtering implies that there were possibly 8

events.

3.1.3 Example 3 (r2 = 12 units2, Tc = 1 ms)

The source wavelet shown in Fig. 6 is embedded within

ambient noise with variance of 12 units2 and time

constant of 1 ms as illustrated in Fig. 11a. The SEEDTM

algorithm is then applied on the noisy seismogram of

Fig. 10a where a HMM frequency bandwith and

resolution of 30–430 and 2 Hz is applied, respectively.

A STA/LTA threshold of 1.2 was specified.

The SEEDTM estimated AMT and STA/LTA is

illustrated in Fig. 11b and c, respectively. Dominant

frequencies are estimated when the STA/LTA ratio

exceeds the threshold of 1.2 as shown in Fig. 11d.

Figure 11a shows the SEEDTM estimated noise

statistics (variance = 11.2 and time constant =

1 ms), the averaged dominant frequency estimate

(115 Hz (true value = 100 Hz)—averaged over time

window where STA/LTA ratio exceeds the threshold

of 1.2 as is illustrated in Fig. 11d) and arrival time

estimate (denoted by vertical red bar).

The impressive SEEDTM results outlined in

Fig. 11 are compared with a standard frequency

filtering algorithm as illustrated in Fig. 12. Fig-

ure 12b shows the seismogram of Figs. 11a and 12a

with an eighth-order digital bandpass (30–150 Hz)

filter applied. The STA/LTA of Fig. 12b is shown in

Fig. 12c. It is clear from comparing Fig. 12b and c

with Fig. 11b and c that the SEEDTM algorithm

provided considerable S/N improvement and allowed

for dominant frequency and noise statistics estima-

tion. The other aspect to be considered in this case is

the number of times the STA/LTA exceeds the

specified threshold: the analysis with the SEEDTM

algorithm indicates that there is only one event,

whereas standard frequency filtering implies that

there were possibly nine events.

3.2. Processing Real Data

In this section, the performance of the SEEDTM

algorithm is assessed by processing real data acquired

with ICP� piezoelectric accelerometers manufactured

by PCB Piezontronics of New York. The accelerom-

eters have a bandwidth of 1–10 kHz and sensitivity of

100 mV/g. The piezoelectric accelerometers have

highly desirable rise and decay times of approximately

5 ls. These fast rise and decay times result in recorded

traces where the input of acoustic wavelets and ambient

noise are recorded with minimal or no sensor distortion.

The seismic data was acquired with a total

sampling of 900 ms, pre-trigger of 270 ms, gain of
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6 dB and sampling rate of 5 kHz specified. The

SEEDTM algorithm had the following parameters

specified:

HMM Filter Parameters:

• Min Frequency—30 Hz

• Max Frequency—430 Hz

• Frequency Resolution—2 Hz.

Trigger Channels Require: 1

Source Dominant Frequencies

• Min Frequency—160 HZ

• Max Frequency—270 Hz.

Source wavelet STA/LTA Parameters

• Threshold Ratio—2.7.

• STA Window—3.95 ms. Automatically calculated

based upon 0.85* median source wavelet period

(STA = 1,000 9 0.85/((270 ? 160) 9 0.5).

• LTA Window (ms)—395 ms. Automatically

calculated based upon 100 9 STA.

Maximum Amplitude Reduction Factor: 6

The accelerometers were placed near an industrial

fan to simulate a high noise environment. Minor

surface impacts (vertical ground impact) were initi-

ated as the PSM system was running so that acoustic

event were initiated and the performance of the

SEEDTM algorithm assessed when processing real

data in a noisy environment.

Figures 13, 14 and 15 illustrate the results from

processing real PSM data in a noisy environment. In

Fig. 13 the raw seismic traces are shown for five

separate events, with the corresponding AMTs and

STA/LTA time series. As is shown in Fig. 13, the

SEEDTM algorithm was able to extract the ‘‘event’’ in

real-time with a high STA/LTA. The estimated

SEEDTM algorithm parameters for the five traces

Figure 13
Display of real unfiltered PSM data with pre-trigger at 270 ms, SEEDTM estimated AMT and corresponding STA/LTA time series
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(starting from top to bottom) are outlined in Table 3.

The background noise in Fig. 13 has an average time

correlation between samples of Tc = 1.32 ms or

aw = 0.86 in (23) for a 5 kHz sampling rate. The

SEEDTM algorithm provided accurate estimates of

the dominant frequencies and Gauss–Markov noise

parameters. For example, Fig. 14 shows the top trace

of Fig. 13 (i.e., trace 1) zoomed-in around the pre-

trigger of 270 ms (‘‘event’’ time location). The peak-

to-peak time offset is estimated at 3.8 ms for a

corresponding dominant frequency of 263 Hz. This is

very close to the SEEDTM algorithm dominant

frequency estimate of 262 Hz. Although the phase

and frequency components of the source wavelets and

background noise are similar, the SEEDTM algorithm

was able to identify the source wavelets and signify

an ‘‘event’’ occurred. Note that the SEEDTM algo-

rithm applies a factor of safety of 20 Hz to the

maximum allowed frequency window (e.g., Max

Frequency: = Max Frequency ? 20 Hz). This is

why some of the SEEDTM algorithm dominant

frequency estimates exceed 270 Hz.

Figure 15 illustrates the raw PSM seismic time

series with an eighth-order zero phase Butterworth

bandpass filter applied. The bandpass was set at

160–270 Hz to reflect the desired source wavelet

frequency window. As is shown in Fig. 15 very poor

STA/LTA time series were obtained with the

Figure 14
Zoomed-in display of unfiltered seismic time series [trace 1 (top trace)] of Fig. 13. The seismic time series has been zoomed-in around the

pre-trigger location (270 ms) so that the peak-to-peak amplitude time offset of approximately 3.8 ms (or dominant frequency of 263 Hz) is

shown
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frequency filtered traces and the user specified

threshold was not exceeded for traces 1–5.

4. Conclusions

This paper has outlined a PSM real-time event

detection filter which builds upon previous designs in

fitting the PSM event detection filter into a Bayesian

recursive estimation formulation and modeling of the

source wavelet as an amplitude modulated sinusoid.

In general terms, the SEEDTM algorithm quantifies

statistically describable background noise into a

Gauss–Markov formulation and identifies embedded

‘‘event’’ anomalies in real-time. These anomalies are

compared to user specified event detection parame-

ters, such as P-wave and S-wave frequency windows,

to assess whether the identified frequency transient is

a P-wave, S-wave, or transient noise.

From the discussion and examples provided in

this paper, it is obvious that the SEEDTM algorithm

provides considerable event detection advantages

when processing passive (micro-) seismic data, such

as:

• The ability to identify events embedded in high

variance and correlated noise environments.

• Significant S/N improvement.

• The ability to derive noise statistics in real time.

• Dominant frequency estimation in real time.

Figure 15
Display of frequency filtered (bandpass of 160–270 Hz) real PSM data and corresponding poor STA/LTA time series

Table 3

SEEDTM parameter estimates

Trace Dominant frequency (Hz) Noise r2 Noise Tc (ms)

1 262 2.2 1.2

2 289 2.1 1.4

3 246 2.3 1.2

4 282 2.6 1.4

5 288 2.5 1.4
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