
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 6, JUNE 2007 1775

Implementation of the Principle Phase
Decomposition Algorithm

Erick Baziw, Member, IEEE

Abstract—This paper outlines the implementation details and
enhancements of a previously described new concept in blind
seismic deconvolution that is referred to as principle phase de-
composition (PPD). A requirement of the PPD algorithm is for the
investigator to determine the seismogram’s dominant frequency
(DF) and corresponding principle phase components (PPCs). Once
these parameters are estimated, a hybrid Rao–Blackwellized par-
ticle filter and a hidden Markov model (HMM) filter are utilized to
separate the potentially time-variant overlapping source wavelets.
A variation of the PPD algorithm that is referred to as the PPD
wavelet extraction (PPD-WE) technique addresses the require-
ment of estimating the seismogram’s DF and PPCs. This paper
describes in detail the PPD-WE algorithm where the overlapping
source wavelets are sequentially and chronologically extracted
from the seismogram under analysis. A HMM filter is described
which facilitates in the simultaneous estimation of the DF and the
corresponding phase of the source wavelet to be extracted within
the PPD-WE algorithm. In addition, the utilization of the PPD-WE
algorithm within standard frequency-domain deconvolution tech-
niques is outlined.

Index Terms—Blind deconvolution, hidden Markov models
(HMMs), jump processes, Rao–Blackwellized particle filter
(RBPF).

I. INTRODUCTION

B LIND seismic deconvolution (BSD) is a very challenging
and important seismic signal processing problem. The

ability to blindly deconvolve an unknown source wavelet from
an unknown reflection sequence has significant importance
within many engineering disciplines such as civil, geotechnical,
mining, and oil and gas exploration. The reflection coefficients
identify and quantify the impedance mismatches between dif-
ferent geological layers. This information is of paramount im-
portance when constructing civil structures and their associated
foundations, monitoring the integrity of earth dams, exploring
for minerals and oil and gas reserves, identifying primaries
during passive seismic monitoring, and carrying out standard
and passive seismic tomography investigations.

In seismology, the recorded time series z(t) is defined to
be the linear convolution of the source wavelet S(t) with the
Earth’s reflection coefficients µ(t), with additive measurement
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noise v(t). The mathematical representation of this relationship
is given as

z(t) =

t∫

0

µ(τ)S(t− τ)dτ + v(t). (1)

The discrete representation of (1) is given as

z(k) =
k∑

i=1

µ(i)S(k − i) + v(k), k = 1, 2, . . . N. (2)

As previously stated, BSD addresses the case where both
S(t) and µ(t) are unknown. A further complication in BSD
relates to the case of a nonstationary source wavelet. It is readily
known that the higher frequencies are attenuated more rapidly
than lower frequencies resulting in significant variation in the
source signal as it travels through the Earth.

Since BSD is a nonstationary and nonlinear optimal estima-
tion problem, it requires algorithms that are structured to meet
these requirements. Algorithms that are based upon Bayesian
recursive estimation (BRE) techniques [where one estimates the
posterior probability density function (pdf)] are ideally suited
for solving nonlinear and time-varying physical problems. The
state-of-the-art nonlinear BRE technique is the particle filter
(PF) and its variants such as the Rao–Blackwellized particle
filter (RBPF).

In [1], an innovative and powerful BRE-type algorithm for
solving the BSD problem is outlined. This algorithm is referred
to as principle phase decomposition (PPD). In the PPD formu-
lation, all the associated filters of BRE (hidden Markov model
(HMM) filter, Kalman filter (KF), PF, RBPF, and jump Markov
systems) are implemented.

The PPD algorithm is shown to have many advantages such
as simple filter formulation with minimal parameter speci-
fication, conducive to BSD, assumption of minimum phase
source wavelet is not required, avoids problems associ-
ated with band-limited source wavelets as in the case of
frequency-domain deconvolution, easily handles nonstationary
source wavelets, provides for time-variant estimations of the
source wavelet, relatively low associated computer computer-
processing cost, reflection coefficients are not required to be
represented by discrete state levels, and a whiteness assumption
governing the reflection coefficient series is not required.

As outlined in [1], the main limitation in implementing
the PPD algorithm is the requirement of specifying the dom-
inant frequency (DF) and the corresponding principle phase
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components (PPCs) of the seismogram. A variation of the
PPD algorithm that is referred to the PPD wavelet extraction
(PPD-WE) technique addresses this challenge. In the PPD-WE
algorithm, the overlapping source wavelets are sequentially and
chronologically extracted from the seismogram under analy-
sis. This mitigates the requirement of prespecifying the DF
and the corresponding PPC. The only DF and corresponding
phase that are required to be specified are those of the current
(in chronological order) source wavelet which is to be extracted
from the seismogram. This information is readily available
from the seismogram understudy.

Section III outlines the basic PPD-WE algorithm. In the test
bed simulation results of Section III-A, a more advanced Monte
Carlo technique is described which allows the investigator to
vary the input filter parameters and subsequently obtain many
estimates of the source wavelet under analysis. The source
wavelet is then derived by averaging the results obtained from
the Monte Carlo technique.

Section IV outlines the significant benefit of the PPD-WE
technique in estimating the source wavelet for input into stan-
dard frequency-domain seismic deconvolution methodologies
such as the water level technique (WLT) [2]. It is unlikely that
the source wavelet will change significantly in stratigraphy such
as pinch-out and thin bed layering. In this case, if the source
wavelet is known, one can simply apply the WLT to obtain the
desired reflection coefficients.

II. BACKGROUND

A. BRE

BRE is an optimal filtering technique that is based on state-
space time-domain formulations of physical problems. Ap-
plication of this type of filter requires that the dynamics of
the system and measurement model, which relates the noisy
measurements to the system state equations, be describable in a
mathematical representation and probabilistic form which, with
initial conditions, uniquely define the system behavior.

The potentially nonlinear discrete stochastic equation de-
scribing the system dynamics is defined as follows:

xk = fk−1(xk−1,uk−1) ↔ p(xk|xk−1). (3)

In (3), the vector fk is a function of the state vector xk and the
process or system noise uk. It is assumed that (3) describes a
Markov process of order one. The sampled potentially nonlin-
ear measurement equation is given as

zk = hk(xk,vk) ↔ p(zk|xk). (4)

In (4), hk depends upon the index k, the state xk, and the
measurement noise vk at each sampling time. The probabilistic
state-space formulation described by (3) and the requirement
for updating the state vector estimate based upon the newly
available measurements described by (4) are ideally suited for
the Bayesian approach to optimal estimation.

BRE is a two-step process consisting of prediction and up-
date [3], [4]. In the prediction step, the system equation defined

by (3) is used to obtain the prior pdf of the state at time k via
the Chapman–Kolmogorov equation, which is given as

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (5)

The Chapman–Kolmogorov is derived based upon the transi-
tional densities of a Markov sequence. The update step com-
putes the posterior pdf from the predicted prior pdf and a newly
available measurement. The posterior pdf is updated via Bayes’
rule as follows:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (6)

The recurrence equations that are defined by (5) and (6) form
the basis for the optimal Bayesian solution. The BRE of the
posterior density can be solved optimally (exact solution) when
the state-space equations fit into a KF formulation or an HMM
[3], [4]. Otherwise, BRE requires an asymptotically optimal
numerical estimation approach such as sequential Monte Carlo
filtering [3]–[6] when deriving the posterior pdf.

As previously stated, the standard set of KF equations can be
implemented as an optimal solution to the BRE when certain
conditions are met. These special conditions consist of the case
where uk and vk are zero-mean independent Gaussian white
noise processes, fk is a linear function of the state vector
and process noise, hk is a linear function of the state vector
and measurement noise, and the initial estimate of x0 has a
Gaussian distribution [3], [4].

Similar to the KF, a jump Markov linear Gaussian system
(JMLGS) is also defined as a linear Gaussian system but in
this case the system and/or measurement equations (fk and
hk) evolve with time according to a finite-state Markov chain
[7]–[9]. Table I outlines the KF governing equations for
a JMLGS [1], [7], [10]. The index i that is denoted in
Table I facilitates the implementation of a bank of KFs when
implementing an RBPF (subsequently outlined). The HMM
filter (also termed a grid-based filter) has a discrete state-space
representation and has a finite number of states. In the HMM
filter, the posterior pdf is represented by the delta function
approximation [1], [3], [4], [10].

As stated previously, the recurrence equations that are de-
fined by (5) and (6) form the basis for the optimal Bayesian
solution and, except for the KF and HMM exact solutions, the
BRE requires an asymptotically optimal numerical estimation
approach. To solve the BRE numerically, a new family of filters
that rely upon sequential Monte Carlo methods [3]–[6] have
been made popular within the last decade. This family of new
filters is most commonly referred to as PFs.

Similar to the HMM filter, the PF represents the posterior
pdf by the delta function approximation, but in this case, a
randomized grid is utilized for the estimation of the posterior
pdf. For the PF, the particle weights are obtained using Bayesian
importance sampling and a typical PF algorithm is generally
referred to as sequential importance sampling (SIS) [3]–[6].
An important component of the PF algorithm is to carry out
a particle degeneracy check. A common problem with the SIS
approach is that after a few iterations, most particles have
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TABLE I
KF GOVERNING EQUATIONS FOR JMLGS

negligible weight (the weight is concentrated on a few particles
only). This phenomenon is referred to as the degeneracy prob-
lem and it is due to the fact that the variance of the importance
weights increases over time. A simple statistic to monitor which
gives an indication of the degeneracy is the effective sample
size Neff . A small value of Neff indicates severe degeneracy.
The standard technique to counter the degeneracy problem is to
resample the particles utilizing a Bayesian bootstrap technique
[1], [3]–[6], [10] if the effective number of particles is less than
a specified tolerance.

The RBPF allows for the reduction in the number of re-
quired particles when implementing BRE on nonlinear sys-
tems. The RBPF combines a bank of KFs with a PF. In
this case, the KFs are utilized for generating a set of parti-
cles, where the weights of the particles are calculated with
a PF [1], [7], [10]. In essence, the posterior pdf is approx-
imated with a recursive stochastic mixture of Gaussians [1],
[7], [10], [11]. This type of particle filtering algorithm is
referred to as Rao–Blackwellization because it is related to the
Rao–Blackwell theorem. The Rao–Blackwell theorem is named
after Calyampudi Radhakrishna Rao and David Blackwell, and
it describes a technique that transform a crude estimator into an
estimator that is optimal by typically the mean-squared-error
criterion [12].

In the RBPF implemented for the subsequently outlined
algorithm, a set of particles are generated by, first, computing
the finite-state Markov chain distribution (FSMCD), which is
denoted as P (yi

k|yi
k−1) in Table I. Second, based upon the

samples drawn from P (yi
k|yi

k−1), a bank of KFs (as outlined
in Table I) is utilized to compute a set of particles. The pos-
terior pdf of the state vector is then calculated and subsequent
asymptotically optimal estimates are obtained.

B. PPD Algorithm Outline

In the PPD algorithm, the source wavelet is modeled as an
amplitude modulated sinusoid (AMS) [1], [10], [13], [14]. The
mathematical representation of an AMS is outlined as follows
(continuous form):

x1(t) = x2(t) sin[ωt+ ϕ] (18)

where x1(t) is an approximation to the seismic source wavelet,
x2(t) is the seismic wavelet’s amplitude modulating term
(AMT), ω is the DF of the wavelet, and ϕ is the corresponding
phase.

As opposed to standard seismic deconvolution techniques
that attempt to derive reflection coefficients, the PPD algorithm
decomposes the seismogram into its associated overlapping
source wavelets. This mitigates the problems connected to
obtaining high bandwidth reflection coefficients from band-
limited source wavelets [1]. The PPD algorithm also provides
for time-varying estimations of the source wavelet.

The PPD algorithm implements a RBPF which individually
weights and subsequently sums a bank of linear KFs with
JMLGS. The KFs define the system and measurement dynam-
ics for event and nonevent conditions [1]. The event condition
is associated with the case of a source wavelet or overlapping
source wavelets being present within the recorded time series
at time index k. The nonevent condition represents the case
when only measurement noise is present. As shown in Table I,
the KFs are specified and updated (at each time increment) by
samples drawn from an FSMCD. The FSMCD is defined by
the probability and transitional probabilities of the event and
nonevent conditions and it provides for a rich and diverse set of
particles.

The major drawback of the PPD algorithm is that the in-
vestigator is required to initially specify the DF and the cor-
responding phases of the overlapping AMS source wavelets.
This has proven to be a difficult task. To circumvent this
limitation, a variant of the PPD algorithm is implemented
where the overlapping source wavelets are sequentially and
chronologically extracted from the seismogram under analysis.
This new technique is referred to as the PPD-WE algorithm.

III. PPD-WE ALGORITHM OUTLINE

In the PPD-WE configuration, there are only two possible
overlapping source wavelets, namely: 1) the source wavelet to
be extracted (SWE) and 2) the remaining seismogram time
series data. Furthermore, for each event condition, there are
only two permutations. These permutations reflect the situation
where only the source wavelet understudy is present at time
index k [i.e., (1, 0)] and the case where the source wavelet
understudy is overlapped with other time series data at time
index k [i.e., (1, 1)]. The two-event condition allows the investi-
gator to implement a significantly simplified PPD where only a
three-state FSMCD (i.e., noise, event condition (1, 0) + noise,
and event condition (1, 1) + noise) is required. This avoids
the requirement of calculating the total number of overlapping
source wavelet combinations [1]. The Appendix provides more
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detail on the utilization of the three-state FSMCD within the
PPD-WE.

In the PPD-WE filter formulation, the state equation defined
in [1, eq. (21)] is slightly modified as follows:



x1k+1

x2k+1

x3k+1

x4k+1


 =




1 ∆ 0 0
0 a2 0 0
0 0 1 ∆
0 0 0 a4






x1k

x2k

x3k

x4k




+




0 0 0 0
0 b2 0 0
0 0 0 0
0 0 0 b4







0
u2k

0
u4k


 . (19)

The PPD-WE algorithm models the AMTs (states x1k and
x3k) of the AMS source wavelet with a first-order Taylor series
approximation. The amplitude modulating terms defined in
[1, eq. (21)] and (19) are forced to be positive by modifying
the state estimate extrapolation equation (10) (see Table I)
so that x̂i

k|k−1 = |F (yi
k)x̂i

k−1|k−1| for states x1k and x3k.
The AMT is set positive and the seismogram is also scaled
(e.g., maximum amplitude of ±200 units) so that the sinusoidal
term of the AMS accounts for source wavelet oscillations. The
rate-of-change terms (states x2k and x4k) are then approx-
imated as Gauss–Markov processes. This allows for consid-
erable flexibility and controllability when assigning prior to
the amplitude modulating terms and for facilitating a greater
diversity of particles (i.e., KFs).

The Gauss–Markov process has a relatively simple mathe-
matical description. As in the case of all stationary Gaussian
processes, specification of the process autocorrelation com-
pletely defines the process. The variance σ2 and time constant
Tc define the first-order Gauss–Markov process. The time con-
stant terms (Tc2 and Tc4, where a2,4 = e−∆/Tc2,4) of states x2k

and x4k are important parameters within the PPD-WE algo-
rithm. It is desired that states x2k and x4k result in a smooth
trajectory of the amplitude modulation terms of the AMS while
at the same time allow for sufficient maneuverability so that
the AMS source wavelet to be extracted (AMS-E) follows the
oscillations of the user-specified sinusoid.

The PPD-WE applies a linear range of possible time constant
terms equal to the number of specified particles (i.e., KFs) for
states x2k and x4k. In the subsequent test bed simulations, the
range of time constant terms varies from 0.6 ms (i.e., a2 = a4 =
0.92, highly maneuverable) to 6.22 ms (i.e., a2 = a4 = 0.992,
sluggish). The re-sampling portion of the PPD-WE indirectly
estimates the optimal value of the time constant for states x2k

and x4k within the range specified. This is accomplished by
duplicating particles (KFs with associated Tcs) with significant
weight and removing those with low weights.

The variances of states x2k and x4k (where b2,4 =
σ2,4

√
1 − e−2∆/Tc2,4) are specified in a manner similar to the

technique utilized in [14] and [15] when modeling nondeter-
ministic forces such as the acceleration of a fighter plane in
a dogfight with another plane. In this case, the acceleration
standard deviation is chosen to be about 1/3 of the expected
maximum acceleration. In specifying the variances of states
x2k and x4k, the PPD-WE algorithm identifies the approximate

Fig. 1. Illustration of a filtered synthetic seismogram with the AMS-E sinu-
soid and corresponding initial zero crossing of 4.2 ms shown.

maximum rate of change within the seismic time series under
investigation and sets σ2

2,4 to 1/9 of the square of this maximum.
The first-order Gauss–Markov measurement noise (i.e., state

x4k in [1, eq. (21)]) has been removed from the system (19)
due to the fact that the low-pass zero-phase-shift frequency
filters applied to the seismogram greatly increases the signal-
to-noise ratio. This mitigates the requirement of modeling
Gauss–Markov measurement error. The measurement error of
the PPD-WE algorithm is specified by parameter Rk defined in
Table I.

The approach taken in simultaneously estimating the source
wavelet’s DF and corresponding phase is to implement an
HMM filter similar to the HMM filters utilized to refine the
AMS phases in the PPD technique [1]. In this PPD-WE filter
formulation, a range of possible DFs (e.g., 30 to 70 Hz in
1-Hz increments) and corresponding phases is prespecified
within a HMM filter formulation. As the data are processed,
the HMM frequency estimation (HMM-FE) filter obtains an
optimal estimate of the DF and the associated phase.

The PPD-WE measurement equation for the case when there
is only the SWE present is given as

zk = x1k sin(ωkt+ ϕ1k) + vk, where t = k∆. (20)

In (20), ω represents the DF of the SWE and ϕ1k is the
corresponding phase at time index k (note: Hk = [sin(ωkt+
ϕ1k) 0 0 0]). As outlined in [1], knowing the DF, one can
easily obtain an initial estimate for the AMS-E sinusoid. For
example, in Fig. 1, the DF of the AMS-E sinusoid is known to
be 50 Hz and the initial phase is estimated to be 105◦ with a
corresponding initial sinusoidal zero crossing of t′ = 4.2 ms.

At the first zero crossing of the AMS-E sinusoid, we have the
following relationship (for negative amplitude first break):

ωt′ + ϕ1′ = 180◦. (21)

From (21), it is clear that there is a linear relationship between
the DF and the corresponding phase at the first zero crossing
denoted by t′, which is given as

ϕ1′ = 180◦ − ωt′. (22)

By utilizing (22), one can easily calculate a corresponding
phase for any DF specified. For example, in the case outlined
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in Fig. 1 (t′ = 4.2 ms), a DF of 40 Hz would result in a
corresponding phase of 119.5◦ and a DF of 70 Hz result in a
corresponding phase of 74.2◦.

Another important PPD-WE parameter to specify is the time
index t1 where it is assumed that the overlapping time series
data have not yet arrived (i.e., only the AMS-E exist). This value
is an approximation and is readily estimated as the end time
of the AMS-E sinusoid initial phase estimate. For example, in
Fig. 1, time index t1 could be estimated to be approximately
7 ms. Alternatively, the investigator may already have prior
knowledge of the minimal separation between reflection coef-
ficients (∆tr) and set t1 = t′ + ∆tr. Time index t1 allows the
PPD-WE to initially lock onto the AMS-E.

The following equation outlines the PPD-WE measurement
equation for the BSD problem when it is assumed that a
maximum of two source wavelets are overlapped at time index
k for the event condition.

zk = x1k sin(ωkk∆ + ϕ1k) + x3k sin(ωkk∆ + ϕ3k) + vk.
(23)

In (23), parameters ωk and ϕ1k denote the DF and the
corresponding phase estimates of the source wavelet (obtained
from the HMM-FE). The HMM filter phase estimate at time
index k for time series data overlapping the SWE is defined by
parameter ϕ3k. The phase window resolution for ϕ3k is set at
1◦ to 360◦.

Major advantages of the PPD-WE algorithm are the sim-
plicity of implementation, minimal parameter specification, and
there is no theoretical limit on the number of overlapping source
wavelets. Table II outlines the PPD-WE filter formulation. A
disadvantage of the PPD-WE algorithm is that any errors gen-
erated during the wavelet extraction process will propagate as
the seismogram is sequentially and chronologically processed.

A. PPD-WE Simulation Results

There are slightly differing possible PPD-WE source wavelet
estimation realizations depending upon the specification of the
initial PPD-WE filter parameters of t′, t1, and Rk, and the
utilization of Monte Carlo techniques to obtain realizations
of yi

k ∼ P (yi
k|y

j
k−1) and jitter the particles (i.e., Step 4 of

Table II). For this reason, a Monte Carlo technique is utilized
which allows the investigator to vary the input filter parameters
and subsequently obtain many estimates of the source wavelet.
The source wavelet is then derived by averaging the subsequent
PPD-WE source wavelet estimates.

In this PPD-WE technique (PPD-WEMC), an additional
time parameter t2 is introduced. Unfortunately, there are some
situations where the AMT of the source wavelet will slowly
start to diverge from the true value due to the degeneracy check.
To mitigate this effect, the degeneracy check is turned off after
time t2 which results in a noisier estimated source wavelet but
the diversity of the particles is maintained.

In the PPD-WEMC algorithm, the investigator initially
specifies minimum t′min (first seismogram zero crossing) and
t2min parameters. These parameters are modified within each

TABLE II
PPD-WE FILTER FORMULATION
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Fig. 2. Synthetic seismogram generated by summing time-variant source
wavelets BSW1, BSW2, BSW3, and BSW4.

Fig. 3. Reflection coefficients utilized to generate synthetic seismogram illus-
trated in Fig. 2.

iteration of the PPD-MEMC algorithm (source wavelet esti-
mate) according to the following two equations:

t′ = t′min + abs(t′′) (24)

t2 = t2min + abs(t′2) (25)

where t′′ ∼ N(0, 0.4) and t′2 ∼ N(0, 225). In addition, the
measurement noise variance is increased from an initial user-
specified minimum Rmin, according to a specified increment
value Rinc (i.e., R = Rmin +Rinc).

The implementation of the PPD-WEMC algorithm is out-
lined in more detail by considering a very challenging synthetic
seismogram which contains time-variant source wavelets and
two closely spaced dipoles. In this analysis, there are four over-
lapping source wavelets. The four overlapping source wavelets
BSW1, BSW2, BSW3, and BSW4 are Berlage wavelets with
DFs of f = 55 Hz, f = 50 Hz, f = 45 Hz, and f = 40 H,
respectively, and parameters n = 2, α = 170, and ϕ = 60◦ [1]
specified.

The synthetic seismogram illustrated in Fig. 2 was generated
by convolving BSW1, BSW2, BSW3, and BSW4 with the first,
second, third, and fourth reflection coefficients, respectively,
shown in Fig. 3 and summing the results. The time series data
illustrated in Fig. 2 have additive Gauss–Markov measurement
noise with variance of 80 units2 and a time constant of 0.01 ms.
Fig. 4 illustrates BSW1, BSW2, BSW3, and BSW4 after imple-
menting the previously described convolution process.

A 200-Hz eighth-order zero-phase-shift low-pass
Butterworth frequency filter is then applied to the synthetic
seismogram shown in Fig. 2 (to increase the seismogram’s
signal-to-noise ratio) to give the output illustrated in Fig. 5.
Fig. 5 shows the filtered time series data superimposed upon
the raw synthetic seismogram illustrated in Fig. 2. The time
parameters t′min, t1, and t2min were estimated to be 11.3 ms,
15 ms (i.e., ∆tr = 3.7 ms), and 21 ms, respectively.

Fig. 4. Output after convolving BSW1, BSW2, BSW3, and BSW4 with
the first, second, third, and fourth reflection coefficients, respectively, shown
in Fig. 3.

Fig. 5. Output after applying a 200-Hz eighth-order zero-phase-shift low-pass
Butterworth frequency filter to the synthetic seismogram shown in Fig. 2.

Fig. 6. Amplitude spectrum of the seismogram illustrated in Fig. 2.

The amplitude spectrum of the seismogram shown in Fig. 2
is illustrated in Fig. 6. As is evident from Fig. 6, the domi-
nant seismic bandwidth resides between 40 and 80 Hz. In the
specification of the HMM-FE frequency range, it is mandatory
that the investigator does not specify frequency values which
incorporate the seismogram’s overall frequency components.
For example, the synthetic seismogram in Fig. 2 has overall fre-
quency components ranging from 60 Hz (e.g., peak 1 to peak 3
and peak 2 to peak 4) to 70 Hz (e.g., peak 1 to peak 2). If
these frequencies are incorporated into the HMM-FE, then the
PPD-WE will just track the seismogram response and not the
PPCs that comprise the seismogram.

In the implementation of the HMM-FE, an initial frequency
range of 40–58 Hz was specified with an increment resolution
of 0.1 Hz. This frequency range was based upon the spectrum
illustrated in Fig. 6 and the requirement of avoiding frequency
components between 60 and 70 Hz.

Additional parameters that are specified within the PPD-
WEMC algorithm were Rmin = 0.1, Rinc = 0.15, number of
iterations = 30, and the number of particles (KFs) for each
PPD-WE estimate was set to 500. The PPD-WE algorithm
responds robustly to the number of particles specified. If there
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Fig. 7. PPD-WEMC estimated BSW1 source wavelets.

Fig. 8. Estimated and true BSW1 source wavelets.

Fig. 9. Estimated residual wavelet and the actual residual wavelet
(i.e., BSW2 + BSW3 + BSW4).

are CPU limitation concerns, the investigator can gradually
lower the number of particles until consistent results are no
longer obtained.

The PPD-WEMC algorithm provided for the AMS wavelet
estimates illustrated in Fig. 7. Fig. 8 shows the estimated
BSW1 source wavelet (black time series) and true BSW1
source wavelet (light gray time series). The estimated BSW1
source wavelet illustrated in Fig. 8 was generated by averaging
the wavelets illustrated in Fig. 7 and applying a 150-Hz low-
pass filter. As is evident from Fig. 8, the estimated and true
BSW1 source wavelets are nearly identical.

Fig. 9 illustrates the estimated (black time series) resid-
ual wavelet and the actual (light gray time series) residual
wavelet (i.e., BSW1 + BSW3 + BSW4). As is evident from
Figs. 8 and 9, there is very close agreement between the
estimated and true time series responses.

Subsequent to the extraction of the first arriving Berlage
source wavelet (BSW1) illustrated in Fig. 8, the PPD-WEMC
algorithm is then applied to the estimated residual wavelet
shown in Fig. 9. In the second pass of the PPD-WEMC algo-
rithm, the time parameters t′min, t1, and t2min were estimated
to be 16.5, 21, and 28 ms, respectively.

The PPD-WEMC algorithm provided for the BSW2 AMS
wavelet estimates illustrated in Fig. 10. Fig. 11 shows the
estimated (black time series) and true (light gray time series)
BSW2 source wavelets. The estimated BSW1 source wavelet
illustrated in Fig. 11 was generated by averaging the wavelets

Fig. 10. PPD-WEMC estimated BSW2 source wavelets.

Fig. 11. Estimate and true BSW2 source wavelets.

Fig. 12. Estimated residual wavelet and the actual residual wavelet
(i.e., BSW3 + BSW4).

illustrated in Fig. 10 and applying a 150-Hz low-pass filter. As
is evident from Fig. 11, the estimated and true BSW2 source
wavelets are very close in agreement, but we start to see a
gradual decrease in the quality in the estimate. This is due to
the fact that any errors generated during the wavelet extraction
process will propagate as the seismogram is sequentially and
chronologically processed.

Fig. 12 shows the estimated (black time series) residual
wavelet and the actual (light gray time series) residual wavelet
(BSW3 + BSW4) where there is again a fairly close agreement
between the estimated and true time series. There is also an
indication of a decrease in the energy level of the estimated
wavelet. The progressive performance limitation of the PPD-
WEMC and PPD-WE algorithms is also due to the challenging
nature of the problem (i.e., two closely spaced dipoles).

Subsequent to the extraction of Berlage source wavelets
BSW1 and BSW2, the PPD-WE algorithm is then applied to the
estimated residual wavelet shown in Fig. 12. In the third pass of
the PPD-WEMC algorithm, the time parameters t′min, t1, and
t2min were estimated to be 22.3, 28, and 35 ms, respectively.
The HMM-FE frequency range was reduced to 40–50 Hz. This
due to the fact that the estimated BSW2 wavelet had a peak
frequency of 50 Hz and one would not expect a subsequently
arriving source wavelet to have a greater frequency component.

The PPD-WEMC algorithm provided for the BSW3 AMS
wavelet estimates illustrated in Fig. 13. Fig. 14 shows the
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Fig. 13. PPD-WEMC estimated BSW3 source wavelets.

Fig. 14. Estimated and true BSW3 source wavelets.

Fig. 15. Estimated and true BSW4 source wavelets.

estimated (black time series) and true (light gray time series)
BSW3 source wavelets. The estimated BSW3 source wavelet
illustrated in Fig. 14 was generated by averaging the wavelets
illustrated in Fig. 13 and applying a 150-Hz low-pass filter. As
is evident from Fig. 14, the estimated and true BSW3 source
wavelets are close in agreement, but again there is evidence in
the gradual decrease in the quality in the estimate.

Fig. 15 illustrates the estimated residual wavelet which is
defined as Berlage source wavelet BSW4. As is evident from
Fig. 15, there has been a significant decrease in the energy
level of the estimated BSW4 source wavelet. Fig. 16 shows the
normalized estimated (light gray time series) and true (black
time series) source wavelets in Fig. 15. As is demonstrated in
Fig. 16, the estimated BSW4 wavelet has a nearly identical
form to the true wavelet. This information would be highly
advantageous when carrying deconvolution on time series with
a known source wavelet utilizing frequency-domain techniques.
This is subsequently outlined in Section IV.

IV. UTILIZATION OF THE PPD-WE ALGORITHM

WITHIN STANDARD FREQUENCY-DOMAIN

DECONVOLUTION TECHNIQUES

A standard frequency-domain methodology in estimating the
reflection series µk is the WLT [2]. If the measurement noise

Fig. 16. Estimated and true normalized BSW4 source wavelets.

term in (1) is ignored, then the Fourier transform of (1) is
given as

z(t) = S(t) ∗ µ(t) ⇔ Z(ω) = S(ω)Ψ(ω) (26)

rearranging terms gives

Ψ(ω) =
Z(ω)
S(ω)

. (27)

Theoretically, for a known source wavelet, one could simply
implement (27) and calculate Ψ(ω). The reflection series µk is
then estimated by taking the inverse Fourier transform of Ψ(ω).
Unfortunately, due to inaccuracies in the specification of the
source wavelet, the band-limited nature of the source wavelet
and additive measurement noise, the implementation of (27) is
highly unstable and inaccurate.

To mitigate the previously outlined limitations, (27) is modi-
fied by, first, multiplying the numerator and denominator by the
complex conjugate of S(ω) [denoted as S∗(ω)] and, second, by
introducing an additive scalar value to the denominator which is
referred to as the water level (∆) [2]. Implementation of these
two modifications to (27) gives

Ψ(ω) =
Z(ω)S∗(ω)

S(ω)S∗(ω) + ∆
=
Z(ω)S∗(ω)
PS(ω) + ∆

(28)

where PS(ω) denotes the power spectrum of the source wavelet
[i.e., the Fourier transform of the autocorrelation of S(t)]. In
general terms, the setting of the water level is a trial-and-error
approach. As ∆ → 0, the resulting estimated reflection coeffi-
cients approach Dirac delta functions. When ∆ � P (ω), the
resulting estimated reflection coefficients become significantly
band limited and the result converges to the Fourier transform
of the cross correlation between the recorded seismogram and
the source wavelet [i.e., Z(ω)S∗(ω)].

The implementation of the WLT in conjunction with the
PPD-WE technique is illustrated by considering the synthetic
time series illustrated in Fig. 17. The simulated time series
shown in this figure is a typical seismogram which one may
encounter and it was generated without my prior knowledge of
the source wavelet(s) or reflection series.

The amplitude spectrum of the seismogram shown in Fig. 17
is illustrated in Fig. 18. As is evident from Fig. 18, the dominant
seismic bandwidth resides between 40 and 60 Hz.

A 200-Hz low-pass Butterworth frequency filter was then
applied to the seismogram in Fig. 17 so that the signal-to-
noise ratio was increased. The PPD-WE algorithm was then
implemented on the filtered seismogram so that the first arriving
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Fig. 17. Typical synthetic seismogram.

Fig. 18. Amplitude spectrum of the seismogram illustrated in Fig. 17.

Fig. 19. Illustration of the output of the HMM-FE filter after processing the
filtered seismogram shown in Fig. 17.

source wavelet could be extracted and estimated. The first 45 ms
of the filtered time series was ignored due to the fact no signal
was present.

As a result of the estimated frequency bandwidth of the
seismogram (i.e., Fig. 18), the HMM-FE component of the
PPD-WE algorithm had a frequency range of 40–60 Hz
specified. Fig. 19 illustrates the estimated DF output of the
HMM-FE. As is evident from Fig. 19, the HMM-FE locks onto
a DF range of approximately 49–51 Hz within 5 ms from the
onset of the first arriving source wavelet.

Fig. 20 shows a single PPD-WE estimated first arriving
source wavelet superimposed upon the true source wavelet.
As is evident from Fig. 20, the PPD-WE algorithm estimated
the correct DF of approximately 50 Hz and also did a very
impressive job in estimating and extracting the first arriving
source wavelet.

As opposed to going through the lengthy process of sep-
arating all possible overlapping source wavelets, the first de-
convolution attempt was performed using the estimated source
wavelet in Fig. 20 and the WLT. If there is minimal source
wavelet variation within the time series, the estimated reflection
coefficients will be very similar in shape. Fig. 21 illustrates the
superimposition of the true reflection series onto the estimated
reflection series for the synthetic seismogram shown in Fig. 17.
For these results, an eighth-order Butterworth low-pass filter
was applied to the noisy seismogram and the water level was
set to 0.2% of the maximum value of the power spectrum
of the seismogram. As is evident from Fig. 21, the WLT in
conjunction with the PPD-WE algorithm did an excellent job in

Fig. 20. (Solid black line) estimated and (dotted line) true first arriving source
wavelet.

Fig. 21. Superposition of (black line) the true reflection series onto (dotted
line) the estimated reflection series.

recovering the true reflection series. In addition, we can assume
that a stationary source wavelet is present due to the nearly
identical shape of the estimated reflection coefficients.

The implementation of the PPD-WEMC algorithm on the
seismogram illustrated in Fig. 17 provided for the source
wavelet estimates illustrated in Fig. 22. Fig. 23 shows the
estimated (black time series) and true (light gray time series)
source wavelets. The estimated source wavelet illustrated in
Fig. 23 was generated by averaging the wavelets illustrated in
Fig. 22 and applying a 150-Hz low-pass filter.

As is evident from Fig. 23, the estimated and true source
wavelets are nearly identical. The estimated responses after
62 ms would generally be ignored and are due to filter residual.
Furthermore, it would physically not be expected for the source
wavelet’s energy level to significantly decay and subsequently
buildup again. The filter residual corresponds to seismogram
responses that have similar DF and phase components to that of
the source wavelet under analysis.
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Fig. 22. PPD-WEMC estimated source wavelets for the seismogram shown
in Fig. 17.

Fig. 23. Estimated and true source wavelets for the seismogram shown in
Fig. 17.

V. CONCLUSION

This paper outlined the implementation details and enhance-
ments of a previously described BSD technique that is referred
to as PPD. An important component of the PPD technique is
the modeling of the overlapping source wavelets as AMSs.
The PPD algorithm utilizes RBPF, JMLGS, and HMM filters
formulations to separate the overlapping wavelets according to
their distinct DF and corresponding phase components.

The PPD algorithm has previously been shown to have many
advantages such as simple filter formulation with minimal
parameter specification, conducive to BSD, assumption of min-
imum phase source wavelet is not required, avoids problems
associated with band-limited source wavelets as in the case of
frequency-domain deconvolution, easily handles nonstationary
source wavelets, provides for time-variant estimations of the
source wavelet, relatively low associated computer computer-
processing cost, reflection coefficients are not required to be
represented by discrete state levels, and a whiteness assumption
governing the reflection coefficient series is not required.

The main challenge in implementing the PPD algorithm is
the specification of the DF and the corresponding PPCs of the
seismogram. For this reason, a variation of the PPD algorithm
that is referred to as the PPD-WE technique has been outlined
in this paper. In the PPD-WE filter formulation, the overlapping
source wavelets are sequentially and chronologically extracted
from the seismogram under analysis. This mitigates the require-
ment of prespecifying the DFs and the corresponding PPCs.
The only DF and corresponding phase which are required to
be specified is that of the current (in chronological order)

source wavelet which is to be extracted from the seismogram.
This information is readily available from the seismogram
understudy.

The PPD-WE incorporates an HMM filter which simultane-
ously allows for both the estimation of the DF and the corre-
sponding phase of the source wavelet. The ability to estimate
the AMS DF makes the PPD-WE algorithm truly blind. An
advanced Monte Carlo PPD-WE (PPD-WEMC) technique is
also described in this paper which allows the investigator to
vary the input filter parameters and subsequently obtain many
estimates of the source wavelet under analysis. The source
wavelet is then derived by averaging the results obtained from
the PPD-WEMC algorithm.

The performance of the PPD-WE algorithm was demon-
strated by considering a very challenging synthetic seismogram
which contained time-variant source wavelets and two closely
spaced dipoles. It was shown that the PPD-WE algorithm
was able to separate the overlapping source wavelets. Major
advantages of the PPD-WE algorithm are the simplicity of
implementation, minimal parameter specification, and there
is no theoretical limit on the number of overlapping source
wavelets. A disadvantage of the PPD-WE algorithm is that
any errors generated during the wavelet extraction process will
propagate as the seismogram is sequentially and chronologi-
cally processed.

This paper also outlined the significant benefit of the PPD-
WE technique in estimating the source wavelet for input into
standard frequency-domain seismic deconvolution methodolo-
gies such as the WLT. It is unlikely that the source wavelet
will change significantly in stratigraphy such as pinch-out and
thin bed layering. In this case, if the source wavelet is known,
one can simply apply the WLT to obtain the desired reflection
coefficients.

APPENDIX

IMPLEMENTATION OF THE THREE-STATE FSMCD
WITHIN THE PPD-WE ALGORITHM

The three states of the PPD-WE FSMCD yi
k ∼ P (yi

k|y
j
k−1)

are measurement noise present at time index k(p(y1k)), the
source wavelet understudy plus measurement noise present at
time index k(p(y2k)), and the source wavelet understudy is
overlapped with other time series data plus measurement noise
at time index k(p(y3k)). As previously stated, a Markov chain is
uniquely defined by the initial distribution and the transitional
probabilities at time k = 0. For the simulations presented in this
paper, the initial distribution for the three-state FSMCD was
set to p(y10) = 0.5, p(y20) = 0.4, and p(y30) = 0.1, respectively.
This initial distribution is based upon the fact that at the start
of the time series under analysis only measurement noise or the
source wavelet understudy will be present (ability to window
in on initial seismic wavelet recordings). The initial transitional
probabilities were specified as


 y

1
1 |y10 y11 |y20 y11 |y30
y21 |y10 y21 |y20 y21 |y30
y31 |y10 y31 |y20 y31 |y30


=


 0.1429 0.0357 0.0909

0.5714 0.3214 0.0909
0.2857 0.6429 0.8182


 . (29)
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These initial transitional probabilities were defined based
upon the fact that the majority of the time series data under
analysis would reflect the case where the source wavelet under-
study is overlapped with other time series data plus measure-
ment noise at time index k. It should also be noted that it is
required that the columns of (29) add up to 1.0 according to the
law of total probability.

At each time increment k, the pdf of the three-state FSMCD
is updated according to the following equation:

 p

(
y1k

)
p

(
y2k

)
p

(
y3k

)

=


 y

1
k|y1k−1 y1k|y2k−1 y1k|y3k−1

y2k|y1k−1 y2k|y2k−1 y2k|y3k−1

y3k|y1k−1 y3k|y2k−1 y3k|y3k−1


×


 p

(
y1k−1

)
p

(
y2k−1

)
p

(
y3k−1

)

 .

(30)

The calculated probabilities p(yi
k) of (30) are sorted from low-

est to highest. The Inverse Transform Method is then utilized
to obtain realizations of the three-state FSMCD equal to the
number of particles NS specified by the investigator. In this
step, a random number generator is utilized to obtain NS

samples of the uniform distribution U i[0, 1]k (i = 1 to NS).
The realizations of the three-state FSMCD are then calculated
as follows:

yi
k =



y1k, if U i[0, 1]k < p

(
y1k

)
y2k, if p(y1k)U i[0, 1]k < p

(
y1k

)
+ p

(
y2k

)
y3k, otherwise.

(31)

The realizations outlined in (31) are based upon the assumption
that p(y1k) < p(y2k) < p(y3k).

In terms of the JMLGS, the system (8) does not change but
the measurement equation is updated based upon the estimated
value of yi

k. For the case yi
k = y1k, the measurement equation

is set equal to the background noise (zk = vk). For the case
yi

k = y2k, the measurement equation is defined by (20). For the
case yi

k = y3k, the measurement equation is set to (23) and states
x1k and x3k are jittered [16] (i.e., add on U[−1.5,+1.5]) to
facilitate a diversity of particles.
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