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Abstract—This letter outlines a novel and robust algorithm for
identifying seismic events within low signal-to-noise ratio (SNR)
passive seismic data in real time. Since the event detection problem
is a continuous, real-time process which has nonlinear mathemat-
ical representations, a Rao—Blackwellized particle filter (RBPF) is
utilized. In this algorithm, a jump Markov linear Gaussian system
(JMLGS) is defined where changes (i.e., jumps) in the state-space
system and measurement equations are due to the occurrences and
losses of events within the measurement noise. The RBPF obtains
optimal estimates of the possible seismic events by individually
weighting and subsequently summing a bank of Kalman filters
(KFs). These KFs are specified and updated by samples drawn
from a Markov chain distribution which defines the probability
of the individual dynamical systems which compose the JMLGS.
In addition, a hidden Markov model filter is utilized within the
RBPF filter formulation so that real-time estimates of the phase
of the seismic event can be obtained. The filter is demonstrated to
provide up to an 80-fold improvement in the SNR when processing
simulated seismic data with Gauss—-Markov measurement noise.

Index Terms—Acoustic signal detection, hidden Markov
model (HMM), jump processes, Rao-Blackwellized particle filter
(RBPF).

1. INTRODUCTION

HERE is considerable interest in the engineering com-

munity in the real-time identification of “events” within
time series data with low signal-to-noise ratio (SNR). This
is especially true for acoustic emission analysis which is uti-
lized for monitoring and inspecting the integrity and safety of
many structures such as metal and concrete bridges, gas and
oil pipelines, large storage tanks, and aerospace vehicles. A
particular important application of acoustics emission analysis
is within the field of passive seismology.

A passive seismic monitoring (PSM) system is designed to
acquire and analyze, in real time, the acoustic signals collected
by an array of appropriate seismic transducers. Seismic activity
is often observed in the vicinity of underground excavations,
deep open pits and quarries, around and below large reservoirs
where fluids are being injected into, or removed from, perme-
able subsurface formations, and adjacent to the sites of large
underground explosions [1].
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Since the monitoring of seismic acoustic emissions is a
continuous, real-time process which typically runs 24 h a day,
seven days a week, it requires the incorporation of real-time
passive seismic signal enhancement and event detection
(PS-SEED) digital filters. These digital filters should also
provide for time-variant, nonstationary, and nonlinear optimal
estimation capabilities. To meet these requirements, a Bayesian
recursive estimation (BRE) algorithm is implemented. The
state—of-the-art BRE nonlinear estimation technique is the par-
ticle filter (PF) and its variants such as the Rao—Blackwellized
particle filter (RBPF) [4]. The RBPF requires that the physical
problem be formulated into linear and nonlinear components.
The RBPF allows for a significant reduction in the number
of particles required for estimating the posterior probability
density function (pdf).

This PS-SEED filter outlined in this letter substantially
builds upon previous original designs [2], [3]. In the PS-SEED
algorithm, the seismic event is modeled as a frequency
anomaly with time-variant phase which is embedded within
Gauss—Markov measurement noise. As outlined in this letter,
the major improvements to the PS-SEED algorithm consist of
utilizing a RBPF which individually weights and subsequently
sums a bank of linear Kalman filters (KFs) with jump Markov
linear Gaussian system (JMLGS) characteristics. The JMLGS
describes linear system and measurement equations which can
change (“jump”) with time (nonlinear component of JLMGS).
In the PS-SEED filter, a hidden Markov model (HMM) filter is
also applied, which allows for the determination of time-variant
phase estimates if a seismic event is present.

II. MATHEMATICAL BACKGROUND

A. Bayesian Recursive Estimation

Bayesian recursive estimation (BRE) is an optimal filtering
technique which is based on state—space, time—domain formu-
lations of physical problems. Application of this type of filter re-
quires that the dynamics of the system and measurement model
which relates the noisy measurements to the system state equa-
tions be describable in a mathematical representation and prob-
abilistic form which, with initial conditions, uniquely define the
system behavior.

The potentially nonlinear discrete stochastic equation de-
scribing the system dynamics is defined as follows:

T = fpo1(@u—,vu—1) < p(Tr|Tr_1). (D
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In (1), the vector f,, is a function of the state vector Z, and the
process or system noise #. It is assumed that (1) describes a
Markov process of order one. The sampled potentially nonlinear
measurement equation is given as

2z = hip(xn,v) < plze|os). 2

In (2), hi depends upon the index k, the state z,, and the
measurement noise ¥, at each sampling time. The probabilistic
state—space formulation described by (1) and the requirement
for updating the state vector estimate based upon the newly
available measurements described by (2) are ideally suited for
the Bayesian approach to optimal estimation.

In the Bayesian approach to optimal estimation, it is at-
tempted to construct the posterior estimate of the state given
all available measurements [4]. In general terms, it is desired
to obtain estimates of the discretized system equation states &y,
based on all available measurements up to time % (denoted as
#1.;) by constructing the posterior p(x|21.x.). The posterior
pdf allows one to calculate the conditional mean estimate of
the state (E[zg|2z1.1]).

BRE is a two-step process consisting of prediction and up-
date [4]. In the prediction step, the system equation defined by
(1) is used to obtain the prior pdf of the state at time % via the
Chapman—Kolmogorov equation, which is given as

P(&k|21:0—1) :/P(-’Ek|27k—1)P(27k—1|z1:k—1)d$k—1- 3)

The Chapman—Kolmogorov is derived based upon the transi-
tional densities of a Markov sequence. The update step com-
putes the posterior pdf from the predicted prior pdf and a newly
available measurement. The posterior pdf is updated via Bayes’
rule as follows:

p(ze|Te)p(Te|214-1)
p(zk|z1:k—1)

“4)

P($k|21:k) =

The recurrence equations defined by (3) and (4) form the
basis for the optimal Bayesian solution. The BRE of the pos-
terior density can be solved optimally (exact solution) when the
state—space equations fit into a Kalman filter (KF) formulation
or a HMM[4]. Otherwise, BRE requires a suboptimal numerical
estimation approach when deriving the posterior pdf.

B. Kalman Filter and Jump Markov Linear Gaussian System

As previously stated, the standard set of KF equations can be
implemented as an optimal solution to the BRE when certain
conditions are met. These special conditions consist of the case
where u; and v are zero-mean independent Gaussian white
noise processes, f is a linear function of the state vector and
process noise, hy, is a linear function of the state vector and
measurement noise, and the initial estimate of zy has a Gaussian
distribution [5].

Similar to the KF, a JMLGS is also defined as a linear
Gaussian system, but in this case, the system and/or mea-
surement equations (f; and hy) evolve with time according
to a finite state Markov chain [6]. Table I outlines the KF
governing equations for a JMLGS [7]. The index ¢ denoted in
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TABLE 1
KF GOVERNING EQUATIONS FOR JMLGS

Description Mathematical Representation Eq.

J’;(NP()//'(\Y)([_I) 3

X = F(yi )xjo + G( i Juj_,

Finite state Markov chain.
System equation.
Measurement equation. z,i _ H(y;; )x,’; +vl
State estimate extrapolation. Iy By
P X1 = FO Vi IXhpr
Pl —FryiP, FrviT 9
-1 = F O )Py F(yi )" +

G( Vi )Qi—k1G( ¥k )

Error covariance extrapolation.

Measurement extrapolation. Z:}; _ H(y;; ))E/I(V(—l 10
Innovation. AL =zh — 3 11
Variance of innovation. s! =H(y£ )PI\'II(—]H(Y;‘()T +R! 12
Kalman gain matrix. Ki= Pklk—IH(YII()‘I‘(SI’c )—1 13
State cstimate update. -’2;(|k _ F(y}; )’%k—l +K,’;A’,{ 14
Crror covariance update. Ply = {I ~KlH(y! )]sz‘ki] I

In (6) and (7) v, and uy are i.id Gaussian zero mean white noise processes
with variances of @y and R, respectively (ie.,v, ~N(O,R,) and

U~ NG ) )

Table I facilitates the implementation of a bank of KFs when
implementing an RBPF (subsequently outlined).

C. Hidden Markov Model Filter

The HMM filter (also termed a grid-based filter) has a discrete
state—space representation and has a finite number of states. In
the HMM filter the posterior pdfis represented by the delta func-
tion approximation as follows:

N,
p(Tr—1]21:6-1) = Z’w;;_l\k_l(s (xr—1— /1) (16)

=1

where z}_, and "”Lukfv i=1,...,N,, represent the fixed
discrete states and associated conditional probabilities, respec-
tively, at time index k—1, and NV, defines the number of particles
utilized.

The governing equations for the HMM filter are derived by
substituting (16) into the Chapman—Kolmogorov equation (3)
and the posterior pdf update (4). This substitution results in the
HMM prediction and update equations which are outlined in
Table II [4].

D. Particle Filter and RBPF

1) Particle Filter: As stated previously, the recurrence
equations defined by (3) and (4) form the basis for the optimal
Bayesian solution and except for the KF and HMM exact
solutions the BRE requires a suboptimal numerical estimation
approach. To solve the BRE numerically, a new family of filters
which rely upon sequential Monte Carlo methods have been
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TABLE 1II
HMM FILTERING ALGORITHM

TABLE III
PS-SEED FILTER FORMULATION

Step  Description Mathematical Representation Step  Description Mathematical Representation
1 !n.it'ialAization .(k:()) - eg, W~ 1/ N, i=1..N, 1 Specify and initializc. System Dynamics
initialize particle weights. : JMLGS system equations xl, al, 0 xly
and Ny x" =ch }{ I sz 7}
2 Prediction - predict the Ny * k- k-
weights. wli(\lffl _ Zwk/—l\k—lp(x/i | xk/_l) the: The mgasuremept bl 0 uly_y
noise (v) variance Ry is set +
=1 J 0 b2 || u24
’ to aly x{g,)? where (g)° is
3 Update - update the Wi Pl | x/z; the variance of the Gauss- Measurement Equations
) j _ ( )
weights. Wk =y, Markov noise. This allows Case 1 ( yl; - ambient noise):
J ( /) the filter to put more
w X 1
z Ke-1PEe Y weight on the prior when zp =xl; +vy
=1 .
. . . 'j the Gauss-Markov noise Case 2 { y2, - ambient noise + event):
4 Obt'am optllpal minimum Ny _ becomes more correlated
variance estimate of the Xp = Zw,’dkx}( & from sample to sample. 22 = x1; + x2, sin(@kA+ @, ) +v,
state vector and -
. =
corresponding error 2 Initialize the prior and 1 2 i
: Ny i , , & 1)
covanance. o transitional pdf for the (o) P(30) & P3| yi-t)
P.ék = Zwk\k(xk - X (X — %) IJMLGS. ij=1,2
i=1 3 Initialize the prior and i N A ;
5 Letk = k+1 & iterate to p(@)&p(9 |9 ), i = 1N,

step 2.

In the above equations it is required that the likelihood pdf p('z, |)c,'C )and

the transitional probabilities p( x,'( x,Ll ) be known and specified.

made popular within the last decade. This family of new filters
are most commonly referred to as particle filters.

Similar to the HMM filter, the PF represents the posterior pdf
by the delta function approximation, but in this case a random-
ized grid is utilized for the estimation of the posterior pdf. For
the PF, the weights in (16) are obtained using Bayesian impor-
tance sampling, and a typical PF algorithm is referred to as se-
quential importance sampling (SIS) [4]. An important compo-
nent of the PF algorithm is to carry out a particle degeneracy
check.

A common problem with the SIS approach is that after a few
iterations, most particles have negligible weight (the weight is
concentrated on a few particles only). This phenomenon is re-
ferred to as the degeneracy problem, and it is due to the fact that
the variance of the importance weights increases over time. A
simple statistics to monitor which gives an indication of the de-
generacy is the effective sample size Ner. An approximation to
Ny is given in Step 7 of Table III where N, defines the number
of particles utilized, and N7 is a user-specified threshold (e.g.,
N7 = (0.6 to 0.8)N,). A small value of N.g indicates severe
degeneracy. The standard technique to counter the degeneracy
problem is to resample the particles utilizing a Bayesian boot-
strap technique [4] if the effective number of particles is less
than Np.

2) Rao-Blackwellized Particle Filter: The RBPF allows for
the reduction in the number of required particles when imple-
menting BRE on nonlinear systems. This is highly advanta-
geous because even though there is a theoretical independence
of accuracy from the particle dimension, practice has shown
that the number of particles needs to be quite high for high-di-
mensional systems [8]. The RBPF can be utilized when the
state—space model is described with both linear and nonlinear
sets of equations.

transitional pdf for the
fixed-grid phase.

4 Draw samples for finite
state Markov chain. Use
HMM filter equations
(Table I1) to estimate

N, = number of fixed-grid values.

yi o~ P(y}; \y'k’,l)

@r i yip =32,

5 Utilizing (8)-(12) outlined
in Table I, propagate the
system equations and
calculate importance
weights for particles.

wh=N(z, | 24,80 )., i=1,. N,

6 Obtain sub-optimal N
estimate of the state vector.

7 Sampling Importance Re- . N,
sampling (SIR). Re-sample ]

if Ny < Ny D i
8 Utilize (13)-(15) to update
the bank of KFs

9 Let k =k+1 & iterate to
step 4.

1) Parameters a(1-2); and b(1-2)  define the Gauss-Markov processes and A
is the sampling rate. Ambient noise parameters a/; and b/, are adaptively
derived from the autocorrelation of the noise portion of the recorded time
series. Parameters a2, and b2 are set by specifying 1/3 of the expected
maximum possible variance of the amplitude of the seismic event and the
corresponding time constant (i.e., correlation between samples) [3].

2) de Freitas [7] demonstrates that the importance weights, wj, for yj are

givenas N(zg; z‘,’( ,S,’c) , where N denotes a Gaussian distribution.

In the RBPF implemented for PS-SEED a set of particles are
generated by firstly computing the finite-state Markov chain dis-
tribution which is denoted as P(y}|y: ;) in Table 1. Second,
based upon the samples drawn from P(y}|y._,) a bank of KFs
(as outlined in Table I) is utilized to compute a set particles rep-
resenting the possible seismic wavelet and ambient noise ampli-
tudes and corresponding weights. The posterior pdf of the state
vector is then calculated and subsequent suboptimal estimates
obtained [7].




III. PS-SEED FILTER OUTLINE

The PS-SEED filter is based upon the standard short-term
averaging/long-term averaging (STA/LTA) technique where
an event is declared within the filtered time series when the
STA/LTA ratio exceeds a predefined threshold [9]. In the
PS-SEED digital filter, the seismic event is modeled as a
frequency anomaly which is contained within measurement
noise [2], [3]. The rationale for modeling the seismic event as
a frequency anomaly is due to the difficulty in characterizing
time-variant passive seismic source wavelets (e.g., ARMA
model [10]) and for added robustness so that the filter can be
applied in varied site conditions with minimal modifications.

A. State-Space Formulation

As outlined in [2] and [3], the measurement noise is modeled
as a Gauss—Markov process with defining parameters of vari-
ance and time constant. This does not preclude any other types
of ambient noise models, but it is required that the measurement
noise be specified within a state—space formulation. The seismic
event is modeled as an amplitude modulated cyclic waveform as
follows (continuous form):

z1(t) = xo(t) sin [wi + o (¢)] (17

where x1(¢) is an approximation to the P-wave or S-wave
seismic wavelet (the frequency anomaly), x() is the seismic
wavelet’s amplitude response, w is the dominant frequency of
the wavelet, and ¢(%) is the corresponding phase.

In [2] and [3], state z»(t) was approximated as a random walk
process, w was assumed constant, and (¢) was derived in an
ad hoc manner. To allow for greater flexibility, the PS-SEED
models state zo(¢) as a Gauss—Markov process similar to that
outlined for the ambient noise model. More sophisticated am-
plitude models can be implemented such as the formulation
of a Taylor series on the amplitude dynamics carried out to a
third term. The third term (acceleration) is then modeled as a
Gauss—Markov process. In the PS-SEED formulation outlined
in this letter, it is again assumed that w is constant (i.e., the in-
vestigator is looking for a dominant frequency which represents
the P-wave or S-wave), while ¢(¢) is derived by implementing
a HMM filter.

B. PS-SEED RBPF and HMM Filter Implementation

In general terms, the PS-SEED obtains estimates of the pos-
sible seismic events by utilizing a RBPF which individually
weights and subsequently sums a bank of KFs which describe
the physics of the ambient noise and seismic event. These KFs
are specified and updated by samples drawn from a Markov
chain distribution which defines the probability of the individual
dynamical systems which compose the JIMLGS [7]. In addition,
a HMM filter is applied which determines optimal (%) values if
a seismic event is present. Table III outlines the PS-SEED filter
formulation.

IV. SIMULATION RESULTS

This section outlines the performance of the PS-SEED for
the specific case of a periodic exponentially decaying source
wavelet embedded within Gauss—Markov noise with widely
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Fig. 1. Source wavelet embedded with varying types of Gauss—Markov

background noise.

varying time constants and high variances. The seismic event is
modeled with defining parameters of initial amplitude, damping
factor, and dominant angular frequency (w = 2xf) [2]. The
simulated seismic event had a frequency of 200 Hz (selected
to reflect typical P-waves recorded by PSM systems within
sedimentary deposits [2], [3]), initial amplitude of 160 mm/sQ,
and damping factor of 79/s specified. The sampling rate was set
at 0.05 ms, and a total sampling time of 300 ms was specified.
Fig. 1(a) illustrates the source wavelet generated with the
previously specified parameters.

Fig. 1(b)—(g) shows the simulated source wavelet with
additive Gauss—Markov noise with variances and time con-
stants specified as (1000 mm?/s*, 0.0001 ms), (1000 mm? /s*,
0.0001 ms), (4000 mm?/s*, 0.0001 ms), (1000 mm?/s*,
0.1 ms), (1000 mm? /s, 1.0 ms), and (2000 mm?/s*, 10 ms),
respectively. The source wavelet had an arrival time of 150 ms
[¢ = 0° in (17)] specified for the simulated traces illustrated
in Fig. 1(b), (d), and (f). In Fig. 1(c), (e), and (g), the source
wavelet had arrival times of 133 ms (¢ = 140°), 138.7 ms
(¢ =90°), and 164.4 ms (¢ = 45°) specified, respectively. In
Fig. 1, the units of the amplitudes of the time series data are
not displayed in order to reduce clutter and due to the fact that
the STA/LTA event detection technique is only dependent upon
relative amplitudes.

The initialization of the JMLGS system equations (Case
1 and 2 of Step 1 in Table III) was carried out similarly
to that outlined in [2]. The initialization of the finite-state
Markov chain probabilities are based upon the likelihood of
an event occurring and the transitional probability of moving
from a nonevent to an event. The pdfs and transitional pdfs
were set to p(yg) = 0.9, p(y5) = 0.1, p(yilys_y) = 08,
PYklyi—1) = 08, p(yilyi_s) = 0.2, and p(yily;_,) = 0.2,
respectively, for the simulations presented here. In general
terms, the probability of an event is about 20%. The initializa-
tion of the pdf of the time-variant phase was set to the uniform
distribution, while the fixed-grid transitional pdf p(%|et ;)
is set quite high (e.g., 0.996), and the remaining values are
set to have a uniform distribution. There were 90 (N,,) phases
specified to reflect the possible phase shifts of 0° to 180° in
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Fig. 2. PS-SEED output results for estimating state 22, after processing the
data shown in Fig. 1.
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Fig. 3. Estimated probability of an event P(y2 k|31:k) for the test case shown

in Fig. 1(b). The first maximum is selected as it corresponds to the first break
[3] of the source wavelet.

2° increments. The number of particles (/V,) specified for the
PS-SEED filter was 100. The degeneracy threshold parameter
Nt was set to 0.8 V,.

The PS-SEED filter was implemented on the simulated data
illustrated in Fig. 1 with the output for state Z2; (seismic ampli-
tude) illustrated in Fig. 2(b)—(g). Fig. 2(a) shows the true ampli-
tude of the simulated wavelets. As is illustrated in Fig. 2(b)—(g),
there is a significant real-time SNR improvement after imple-
mentation of the PS-SEED algorithm. In these test cases, the
SNR is defined as the ratio of the average maximum ampli-
tude of the signal to the maximum average amplitude of the
noise. The PS-SEED was able to increase the SNR by approxi-
mately 80-fold, 80-fold, 30-fold, 10-fold, 9-fold, and 11-fold for
the Gauss—Markov additive noise illustrated in Figs. 1(b)—(g),
respectively. The lower SNR is due to the noise characteris-
tics more closely matching those of the source wavelet making
real-time noise/signal separation more difficult. The HMM filter
portion of the PS-SEED algorithm also did a good job of es-
timating the phase shifts for the source wavelets illustrated in
Fig. 1 as indicated by the responses shown in Fig. 2. Fig. 3 il-
lustrates the estimated probability of an event (P(y2|z1.x)) for

the test case shown in Fig. 1(b). As expected, the probability of
an event increases along with the seismic amplitude estimate il-
lustrated in Fig. 2(b).

V. CONCLUSION

This letter has outlined a BRE algorithm which utilizes a hy-
brid RBPF and a HMM filter for the purpose of identifying
events during passive seismic monitoring. The event detection
algorithm builds upon previous designs where the major im-
provements consist of modeling the problem as a JMLGS and
the implementation of a HMM filter for quantifying the phase
of the seismic events. Simulation results were presented where
source wavelets with additive Gauss—Markov background noise
were analyzed and results evaluated in terms of the improvement
in signal-to-noise ratio. There is up to an 80-fold improvement
in signal-to-noise ratio after implementation of the PS-SEED.

Although the described filter has been utilized for automating
the identification of seismic events during passive seismic in-
vestigations, the filter is easily applied to many other acoustic
emission problems requiring real-time event detection. It is also
the intention of the author to update the PS-SEED filter so that it
not only gives real-time phase estimates but also quantifies the
frequency content of the seismic events.
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