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Abstract - Offshore Systems Ltd. (OSL) produces an ECDIS',
which is called the Electronic Chart Precise Integrated Navigation
System (ECPINS®). The objective of the ECPINS® research is to
incorporate the essentials of marine navigation into a single
bridge display that automates marine navigation, thereby reducing
cost and increasing safety.

Currently OSL has incorporated electronic charts, positioning
algorithms, route planning, and radar overlay into its ECDIS. The
positioning algorithms implement Kalman Filters to track radar
targets and to estimate the vessel’s position. This paper presents
a proposed steering algorithm based on optimal control concepts
for the vessel’s autopilot.

The performance of the steering algorithm for the vessel’s
autopilot is evaluated by processing synthetic data. Desired route
and vessel steering trajectories are presented and the performance
is evaluated. From the results obtained and analyses conducted,
it was found that this preliminary autopilot design provided a
good basis for a final steering algorithm.

1.0 INTRODUCTION

The most important feature of an ECDIS system is that it
accurately display a vessel’s postion and velocity vector on an
electronic navigational chart (ENC) in real-time. OSL’s
engineering department has developed considerable experience in
the application of Kalman Filters( [1] and [2]) in the estimation
of a vessel’s kinematics from noisey and nonlinear measurement
data. The next logical step from estimating a vessel’s kinematics
is to control the vessel’s steering mechanism in order to drive the
vessel’s states to desired values. This might be required, for
example, during route surveying, docking, or navigation in
critical channels.

There are several ways in which one could specify a control
problem for the purpose of designing an autopilot for the vessel.
It was decided to start with a relatively simple control problem
so that insight into a practical solution could be obtained. A
relatively simple control problem can be specified if it is assumed
that one is only concerned with controlling the transverse
(crosstrack) position error and the heading angle error for a given
route; it is further assumed that these errors should be driven to
zero in minimum time.

The first step in designing the control strategy is to adequately
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define the physical problem. It is important that the physical
problem be defined by a set of easily solved differential
equations. Section 2.0 outlines the physical model and the
differential equation defining the vessel’s dynamics when
controlling the vessel’s center of gravity (cg).

The next step in designing the vessel autopilot problem is to
determine which control theory is most applicable to solving the
desired boundary conditions. The control strategy outlined here
relies on certain results from the Maximum Principle of
Pontryagin. Section 2.1 outlines the governing control equations
and the derivation of the bang-bang switching times of the rudder
control.

In Section 2.2 the performance of the steering algorithm is
evaluated by processing synthetic data derived from a vessel
travelling along a predefined route, with various environmental
conditions. Crosstrack and yaw error data are presented along
with the controller’s rudder commands. In addition, Section 2.2
discusses the control strategy for dead band modes of operation.

2.0 PHYSICAL PROBLEM

The simplified vessel dynamics are specified by applying
Nomoto’s First-Order Model relating a vessel yaw rate to the
rudder angle ([3] and [4]). The model is specified by equation
(1a), where it is assumed that the coupling between the linear
yaw and sway are small.

Ty + § = K,sind (1a)
where

¥ = vessel's yaw angle in radians

& = vessel’s rudder angle in radians

T = time constant relating how long it takes the
vessel turning rate to respond to angle (8).

K, = constant (or slowly varying function) which is
dependent upon the propeller thrust (T), the vessel
turning drag (Dw , and the moment arm from the
center of gravity to the rudder (1), ie.,

K, = fen(T,Dy,D)

The simplified expression of the vessel’s velocity magnitude (V,)
is defined as

0-7803-3085-4/96 $5.00 © 1996 IEEE



V, = KT vessel velocity (1b)
In this equations K, is a constant (or slowly varying function)
which is dependent upon the propeller thrust (T) and the vessel

velocity drag (D,), ie.,

K, = fen(T,D,) (1c)

vessel velocity constant

Figure 1 illustrates the vessel’s kinematics.

It is assumed that the dynamics of the rudder are much quicker
than the dynamics of the vessel’s turning rate. In this case the
rudder motion (8) is assumed to be instantaneous compared to
changes in the heading (y).

The coordinates for the vessel’s motion are defined as follows:

X\, Y, are the fixed navigation coordinates

Xy, Yy are the desired route coordinates
where

X|, is perpendicular to the desired route

Yy is along the desired route

These coordinate systems have a common origin, and v is
measured clockwise from north (Y, axis) as shown in Figure 1.

The position of the vessel is defined as follows:

Xy Yy is the vessel location wrt the navigation

coordinates
X4 ¥4 is the desired vessel location wrt the

navigation coordinates
x;v, y;, is the vessel location wrt the
desired route coordinates
Xy vy is the desired location wrt the
desired route coordinates
Y is the heading wrt the navigation coordinates
U, is the desired heading wrt the navigation
coordinates
w), v. water current andjor wind velocity along
X;,, Y,’,, directions
W, water current andjor wind velocity effecting yaw rate

The position, heading, and heading rate errors are defined as:

(Ax, Ay) = (xp ¥y — (xp Y9
(Ax', AY) = (5 Y1) ~ % 92
Ay =y - ‘Vd
Af = ¢ - ‘pd

The control problem is specified as controlling the transverse
(crosstrack) position error (Ax"), the heading angle (Ay), and the
heading rate (AV) such that they are driven to zero in minimum
time. Of course, a different control strategy could be specified
when it is important to control the translational position error
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(Ay’) to zero; this might be required, for example, for a portion
of the vessel’s route, or at the end of the vessel’s route. This is
a more complicated control problem and will be addressed in a
separate paper. More specifically, we define the present control
problem as follows:

given the initial states at time t°,
Ax'(t%) , Av(r9), and AG(%)
determine a rudder strategy, 8(t), over the
time interval t°stst!
such that the final states at time t/,
Az’ LAY, and AG(t)
are driven to zero in minimum time,
ie., t'~t° is minimized.

It is assumed that the rudder angle is limited as follows

3] s 8™,
where 8™~ is a specified constant,
and 8™ could have different values
depending on the particular steering mode.

(2a)

For convenience a state vector x is defined as follows:

(x, Xy %5, ) = (Ay, AX, Ay, AY)  (2b)
The differential equations can then be written as

% = Vcosx, + u‘L (3a)

#, = Vsinx, + v, (3b)

Eo=x v 0, - Oy 3o)

%, = -%‘x‘, . i;sina Gd)

As previously noted, u,/, v/, ¥, and ¥, are assumed to be
known functions of time.

2.1 CONTROL EQUATIONS
The Hamiltonian for this control problem is given by

HP, x, 8) = E,_m P, + 1

b

(a)

substituting values for %,, X,,and X, gives
H = PVsinc,+v) + Pyfx,+4,-U,) (4b)

« Pf-Lx + Bns) + 1
T

The adjoint equations are given by the partials



¥° = Actual Heading
Y% = Desired Heading & o
T = Propeller Thrust & (ores 5
§ = Rudder Angle R x) = o
£ = Rudder Moment Arm +
P°= Actuadl Position o
P¢ = Desired Position £ AP
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: X
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Figure 1. Vessel Configuration and Coordinates.

b= i-234
ox,;
thus
P, =0 - P,(0=P;, a constant
B, = -PJV cosx, (4e)
B, =P, - lTP4

it is noted that
B ;:s‘ = -P}V,cosx,

If it is assumed that 13} < 900, then to minimize H it is clear that

3() = -sign(P()8™ (4d)
where 8™ is the maximum valiue of |8]|.

If we had an explicit solution for P,(t), the time optimal control
strategy for & would be specified. In general, the solution of P,
in equation (4c) requires an iteration process on the initial values
for P, (P,"), P, (P;°), and for P, (P,°) such that x,, X;, and X, at
the end time (t%) are zero (for example see [5]).

Another approach for evaluating &(t) is to make the additional

assumption concerning the number of switchings of 8(t) (ie., the
number of zero crossings of the adjoint variable P,). In particular,
if we assume that x, does not get too large, so that we can
approximate sinx, by x,, then we can apply certain results from
the Maximum Principle of Pontryagin. In particular, Theorem 6-8
of [5] implies that a unique optimal control exists which will
switch at most three times in the interval tf - t°. The optimal
control strategy for a particular set of initial and final states can
then be specified by the sign at t® (A°) and three time intervals
(T, Ty T), ie., under these assumptions,

3(®) = fon(K,,8° AT, T,,T,)

In this case equation (3d) can be written as

/
% = Ly« Kup (de)
T T
where
/ .
K, = le,sm&mlx
A°  fort® <t s t°+T,
A ={-A° for 1°+T, < t s t°+T,+T, “n
A°  for t°+T+T, < t < ¢°+T|+T+T,

The final values for x,, x,, x, can then be expressed as
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xf = xfexp MEIT L b “4g)

2 = X0+ -Trgexp MBI (4h)
and

x{ = ,\75’+I‘V+I/"J [ x(t)dt &)

T+Ty+Ty

fxs(t)dt = f x5+ I - T f exp™dt + I}

The parameters in these equations are defined as follows:

Ky  aome 1
IlA - ¥ exp (T+Ty+ )T f exp T A(dr
T T)4Ty+T,
K,0°(1-2exp ™ +2exp
exp-(TpT,*T,)[T)

=(T,+T )T

i

(5a)

YT

NND.
it

[ Rwedt = KA-T+2Texp”
T Ty

2Texp @2 Texp MBI T T 2T (5B)

I}

f Bd: =

T+ T,+Ty
K AT - T2+ T (T, T)-T, T,

-T(T,-T,+Ty) ST2(1 - exp’(T"TfT’)/T 60
N 2exp_(T2'T’)lT—Zexp'T’/T)

o= [ - 9
T+ Ty T,

B o= [ [, v (5e)
T+ T+ Ty

o= [ wa &)

T+ Ty Ty

Equations (5a) to (5c) can be written more concisely by making the

following substitutions

Let

S

y = T+TprT, S, = T)+T, E, = eXP-Tﬂ,
E

A exp ™7, and E, = exp_s’”

@

Equations (5a) to (5¢) can then be written as

I

a

K AY1-E,+2E, 2|

L = K AY(T,-T,+T,)-T(1-E,+2E,~2E,)]

I = K AUT -T2+ T(Ty+ T-T,T,
~T(T,-T,+T,)+TX(1-E;+2E,-2E )]

it

Remark: It is recalled that the environmental inputs ¥, ¥y, and v,
are assumed to be known functions of time, so that the integrals I,%,
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1,Y, and I,¥ can be evaluated numerically. It is also reasonable to
assume that ¥, and v,/ are available during the control interval
T,+T,+T;, then these estimates can be used for the next sampling
time. The previous time interval T,+T,+T; minus the sampling
interval At would be used for this integration.

As is recalled, it is desired to drive the states x,, x,, and x, to zero
in minimum time. Using the above definitions, the end values xf,
X4', and x,’ are given by

g = x,{ = xE, + If (6a)
& =¥ =c] +x{T1-E) + I (©B)
& = =c; + S, + VXJTE, + VI3 (6¢)

where
o5 = + I
ef=x + VI I - VI

¢ = VS« VAT

One method for solving the constraint equations (ie., g(T; A% x°, x)
=0,T=(T, T, Ty, T, 20i=12,3)is to apply the Newton
iteration technique. The Netwon iteration technique for this problem
can be stated as

T = T - [FTF'Fg(T)) ™

where F = %
9

T=T'

The Newton technique requires an initial guess for the switching
times (T,%, T,°, T,%), and then iterating on this guess by applying
equation (7). This iteration is repeated until the constraints
calculated from the new estimates on the switching times converge
to within some predefined tolerance.

The partials of g = (g, g,, g3) wrt T = (T, T,, Ty) are given by
=98 -
Fe=or =Wl ®

where

E 7
fa = _TE(AO —x:)

fo = AYQ-Ep+es

Fiy = VATUTIE,-11+8) e 4,

fa = [AYE2E)-ExT

f = AYQE,-E;~1)+c,

f = VATTUE,2E)+T,-T,-Ty)vc; 4¢;
fis = [Ao/(l “Eps) “Ea":yT

Jos = AO/Em*C;

V,A°(85 -TE ) +¢,+c;

oIt jAT+Eyxg

= V20 [T+ 30T~ E, TV jx;

oh
S8
]

o
[N}
n



A° = K,A°
Ey, = 1-E;»2E,-2E,
S; = T,~T,+T,

The initial guess on the switching times is obtained by solving
the control problem with the assumption that the time constant
(T) is zero. This resulfs in a second order problem.

Control Problem for T = 0

For the case T = 0, differential equations (3a) to (3d) are written
as

%, = Vcosx, + ul, (9a)
%, = Vsinx, + V), (9b)
% = Ksind + 4, - ¥, Oc)

Theorem 6-8 of [5] implies that a unique optimal control exists
which will switch at most two times in the interval t' -t°. The
optimal control strategy for a particular set of initial and final
states can then be specified by the sign at t° (A°) and two time
intervals (T,, T,), ie.,

5@ = fen(K,8™A%T,,T,)

Under these assumptions, equation (9¢) can be written as

iy = KA+, -, od)
where
K, = K, sin3™= e)
A - A°  fort® st s t+T)
T -A° for 4T, < t < t9+T+T,
Thus
x = KLA°T, - Ty + f b, - bpdt + x5 O
I+T,
o=V, [ xod -+ [ viod+x 9g)
Ty+Ty T)+T,

As above, it is convenient to make the following definitions:

A

1t = [ AW = A°0,-T) ©h)
T+T,

5 os [ [ Awda - —Az%p(ﬁ + 20T, - ) 9D
T+T,

where IY, I¥, and I, are defined in equations (5d)
to (5f), but integrated only over interval T,+T,.

Since x, = 0, equation (9f) gives
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@+ %)
’

¥

AT, - Ty = - =@+ %)

x;” = I;f‘l-vx;/ ©p
where { 1Y = IY/K,

o’ L1724
X3 = x3/K,

- [N
T, =T +3x A%

Since x,f = 0, equation (9g) gives the following guadratic
equation in T, (assuming sinx, = X,):

12

/ / X,
220 T+ A"(I;’ ol el )—I{' x5 ”+~ST =0 ()
’ 1'3 v x5 ! n / x"
where[: 5_2_,.’ x3° ___3_’ ]1" E 1/, o = 2/
/
KW K‘U VoK\ll VOK\U

The roots of a quadratic equation ax® + bx + ¢ = 0 are given by

- (-bt){b’ —4ac)

Xy,

2a
> 0 real and unequal roots
and b* - 4ac = {0 real and equal roots
<0 imaginary roots

From equation (9k) we obtain
0/2 w/l

X, 1
R = bi-dac = 40" - A°(1;”+I;'+x;)+i’2———12—) ©D

The two roots from the quadratic equation (9k) are given by

/
. 0,0
T, + A%

- 0.0’
T, + A%;

Ty = A% + R and Tj =
T, = -A% - R and T; =
where R is defined by equation (91).

The value selected for T, and T, will then be such that

T, + T, =min, ., (T{ +Tp), withT|, T, 20

From initial simulation results, it appears that for a vessel with
T < 3 seconds, the second order control equations provide
adequate solutions. Generally, a vessel’s T value is determined
from the following equation

T =LT/V,

where L is the length of the vessel, T’ is the ratio of the yaw
inertia coefficient to the yaw damping coefficient (= 0.2 to 2.0)
(note: this parameter is obtained from graphs {4]), and V, is the
vessel velocity. For example, the second order solution would be



appropriate for a vessel defined with T = 1, V, 2 Sm/sec, and L
< 15m.

It should also be noted that the K,, value is determined from the
following equation

K, = K,V/L

where K, is the ratio of the turning moment coefficient to the
yaw damping coefficient, A large K,/T’ ratio is indicative of a
vessel with good maneuverability [4].

The following algorithm is used for computing the control
parameters A°, T, T,, and T, as a function of the initial states x,’,
x,°%, and x,°.
Initialize T, = T, = 10°, T, = 1
Solve Second Order Control Problem (ie., T < 3)
1. Select A° = +1, then compute R = (b? - dac)/4
2
1y

2

2
[4

x

Note: R = ~A°(I;" + I;'/ + x,f’/) + 2

.

if R <0, goto 4.

2. Compute T,"* = -x,* + ¥R
if T,** <0, go to 3.
T, = T, and T,** = T, + A%,
if T,"* < 0, go to 3. Otherwise T, = T,".

3. Compute T** = -x,” - ¥R
if T, <0, go to 4.
T]2 = T‘2,+ and T22‘+ = T)2'+ + on3cn
if T,>* < 0, go to 4. Otherwise T,> = T,™".
if T2+ T2< T, +TysetT, =T and T, = T,2

4. Select A° = -1, then compute R = (b? - 4ac)/4
ifR<0,gotos5.
Compute T, = -x,” - ¥R
if T,"" <0, goto5.
Otherwise T,' = T," and T, = T,"" + A°x,*”
if T,'" < 0, go to 5. Otherwise T,' = T,
T+ T, <T,+T,setT, =T, and T, = T,.

5. Compute T\ = -x,” - ¥R
if T <0, goto6.
T2 =T and T, = T, + A%,
if T, < 0, go to 6. Otherwise T,> = T,™.
T2+ Ty2< T +TysetT,=T and T, = T,

6. Check for Dead Bands
if |T,] < T,™, set T, = 0 and A° = -A°
if |T,] < T,™ and |T,} < T,™ set T, =0, T, = 0, and
A° = 0.
Note : T,™, T,™, and 8™ should be obtained from an
algorithm that is a function of |x,°[ and [x;°].

7. Compute the integrals 1,¥', LY, 1, using the time interval

T, + T, - A,. (A, = control computational interval)
Solve for Control Problem where T > 3

8. Initial guess T° = (T\°, T,° 1) and A°, where T,°, T,°, and A°
are solutions to the second order solution.

9. Evaluate [F) defined by equation (8), and [F'F}*.

10. Apply Newton’s iteration method until g(T') < AG, where
AG is a predefined tolerance.

11la. If T, < 0, then set A® = -A°,

Else

11b. Compute the integrals 1,¥', LY, I," using the time interval
T, +Ty+Ts- A,

12. Check for Dead Bands.
EXIT.

A block diagram of the suboptimal feedback control scheme for
vessel steering is illustrated in Figure 2.

2.2 AUTOPILOT SIMULATION RESULTS

The performance of the steering algorithm is evaluated by
processing synthetic data derived from a vessel travelling along
a predefined route for these test cases. The first two test cases
simulate a vessel with a small Nomoto time constant; therefore
the second order control solution is applied.

Test cases 1 and 2 have a Nomoto First Order time constant of
3 seconds and a K, = 0.0349 (1/s) (calculated for ™ = 30°, V,
= 10 knots, and V,,,, = 1%s). Test case 3 has a Nomoto time
constant of 20 seconds with the same K,, as that for test cases 1
and 2.

The steering algorithm not only maintains positional and yaw
accuracy of a vessel on its current leg, but it also maneuvers a
vessel when it switches to a new leg. This maneuver is referred
to as the "autopilot turning circle". Figure 3 illustrates the
necessary variables to consider when calculating the “autopilot
turning circle". The location on the current leg where the vessel
switches to a new leg is determined by calculating a critical
distance from the end point of the current leg. This critical
distance is calculated as

R = Turning Radius, D = Critical Distance

R
0 = - a,)/2, tan® = —
(a, N D

[4

Iz

D= R (10)
tand
Note: effects from v,’v are also taken into account.

by =20/(20/9,) + 1]

The steering algorithm sets the autopilot into a dead band mode
of operation when the switching times become less than



Desired States Inputs

Xg Yq VY
«f Gy e Y
COMPUTATION OF suboptimal rudder VEHICLE

= SUBOPTIMAL
RUDDER CONTROL

controls every ———e

As secs (5(0) DYNAMICS

x(t)
Xo X3 X4 x0 State
Initial States Variable

estimated states X OBSERVATION
estimated inputs OF STATE
Ow O VARIABLES

SIMPLIFIED
VEHICLE
EQUATIONS

Uw Wy '!pw
every A, secs

Notes:

1. State is measured every A1 seconds. State is estimated every AZ seconds. The rudder angle
is computed, for the interval Ty +Tp+ T3, every Az seconds with Ay < A, < A,

2. The rudder angle 6(t) calculation is based on simplifying assumptions about the vehicle
dynamics and the wind/water forces.

3. Uncertainties in the vehicle dynamics and inputs are accounted for by the feedback effect
of recomputing 8 (t) at a sufficientiy high rate As.

Figure 2. Suboptimal Feedback Control Scheme

Figure 3. Autopilot Related Turning Circles
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predefined T,"®, T,™", and T,™, These minimum times are
determined from the following algorithm

Assume T = 0, specify crosstrack and yaw error
tolerances. Xy, = crosstrack error tolerance

X;roL = yaw error tolerance

. o _ oL
© e b v
R < TN T = 1
else T =TT

T R

In addition to setting the autopilot into a dead band mode of
operation, there are also limitations placed on ™. As the vessel
approaches X,ro ° and Xspo %, 8™ is exponentially decayed to
some predefined 8™ (ie., function of v,/, ¥y, y,, and V)

Figure 4a illustrates the test results for test case 1 where the
positional and yaw time histories of a vessel, as it travels along
a predefined route in Vancouver Harbour, is shown. The vessel
route begins at leg 1 and progresses onto legs 2, 3, 4, 5, 6, 7, and
8, and then back again to leg 1. The vessel travels at a speed of
14 knots with no current effects. Figure 4a illustrates the origin
of the vessel turning radius. Figure 4b shows both the yaw errors
and rudder commands for test case 1. The large yaw errors are
indicative of the manuever of the vessel when switching to a new
leg and are not actual errors in the steering algorithm. The decay
in 8™ (ie., 8™) is pointed out along with the dead band modes
of operation. Figure 4c illustrates the crosstrack errors of the
vessel with respect to the active leg. The large crosstrack errors
occur when the vessel maneuvers to a new leg and are also not
actual errors in the steering algorithm.

Figure Sa illustrates test case 2 where the positional and yaw
time history of a vessel as it travels along a predefined route in
Vancouver Harbour is shown. As in test case 1, the vesse] route
begins at leg 1 and progresses onto legs 2, 3, 4, 5, 6, 7, and 8,
and then back again to leg 1. The vessel travels at a speed of 14
knots with a 2 knot current @45° from true north. Figure Sa
illustrates the origin of the vessel turning radius.

Figure 5b shows both the yaw errors and rudder commands for
test case 2. As in case test 1, the Jarge yaw errors are indicative
of the manuever of the vessel when switching to a new leg. In
this test there is also a decay in 8™ (ie., 8™") and dead band
modes of operation. Figure 5b also illustrates the yaw error
offsets. These offsets are due to the steering algorithm
counteracting the 2 knot current @45° from true north. Figure 5¢
illustrates the crosstrack errors of the vessel with respect to the
active leg. As in test case 1, the large crosstrack errors occur
when the vessel maneuvers to a new leg.

Figure 6a illustrates test case 3 which has identical vessel model
parameters to that of test cases 1 and 2 except for the Nomoto
Time Constant which is set to 20 seconds. The vessel is
following the same route as the previous tests where it starts at
leg 1 and progresses onto legs 2, 3, 4, 5, 6, 7, and 8, and then

back again to leg 1. In this test the vessel travels at a speed of 14
knots with no current effects. Figure 6a illustrates the origin of
the vessel turning radius.

Figure 6b illustrates the decay in 8™ (ie., 8™) and the dead
band modes of operation as in test cases 1 and 2. Figure 6¢
shows the crosstrack errors of the vessel with respect to the
active leg. Figures 6b and 6c illustrate relatively more sluggish
vessel dynamics for test case 3 compared to that of test cases 1
and 2. This is due to a larger Nomoto Time Constant and small

K, value.
3.0 CONCLUSIONS

A vessel steering algorithm has been presented where it is
required to drive the transverse (crosstrack) position error and the
heading angle error and rate to zero in minumum time. In
addition, a control strategy has been outlined for the dead band
modes of operation.

The performance of steering algorithm was evaluated by
processing synthetic data. Crosstrack and yaw errors were
analyzed along with with the controllers rudder commands. From
the resuits obtained and analyses conducted, it was found that this
preliminary autopiloit design provided a good basis for a final
steering algorithm,

A more detailed discussion of the convergence properties of the
iteration scheme employed in this paper, and of the numerical
solution of the adjoint variables formulated will be presented in
a future paper.
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Vessel Speed @14 knots
Nomoto Time Caonstant =
3 sec

Figure 4a. Vessel Route for Test Case 1 (T = 3s, V, = 14kt, K, = 0.0349s", and 5™ = 30°).
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Figure 4b. Yaw Error and Rudder Command for Test Case 1.
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Figure 4c¢. Crosstrack Error for Test Case 1.
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Figure 5b. Yaw Error and Rudder Command for Test Case 2.
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12



Degrees (%)

Crosstrack Error (m)

. Origin of Vessel
S0 Tarndng Radius: 7
. T

200

100

~100

-200 +

-300

-400 -

-500

-600

-700

-800

Figure 6a. Vessel Route for Test Case 3

3 (T = 20s, V, = 14kt, K, = 0.0349s”, and 5™ = 30°).

Yaw Error
— Rudder Command

820

Time (sec}

Figure 6b. Yaw Error and Rudder Command for Test Case 3

- AU e

Leg 1

t T F—t—
[ v«) aoo 360 480 54
Leg2 Leg 4

o
Pt

1320 1380

At e s e e B A 1

0 600 460 720 780 840 900 960 1020 |10f0 1140 1200 h26

Legb
leg7
lLeg 8

Time ({sec)

Figure 6¢. Cresstrack Error for Test Case 3.
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