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ABSTRACT: Seismic Cone Penetration Testing (SCPT) is a geotechnical tool which facilitates the
determination of low strain (<10*%) in-situ compression (P) and shear (S) wave velocities. The P-wave and S-
wave velocities are directly related to the soil elastic constants of Poisson’s ratio, shear modulus, bulk modulus,
and Young’s modulus. The seismic cone records the arrival of seismic waves generated at the surface using
velocity or acceleration transducers installed in an electric piezocone. The in-situ P-wave and S-wave interval
velocities are determined by firstly obtaining the corresponding time series arrival times or relative arrival times
as the probe is advanced into the soil profile. Inversion analysis is then carried on the recorded P-wave and S-
wave arrival times so that corresponding interval velocity profiles are obtained.

In SCPT there are site conditions which result in source wavelet multiples. These multiples complicate the
recorded time series making the selection of interval arrival times a difficult task. This paper outlines a state-
space smoothing Kalman Filter algorithm which deconvolves impedance structures from recorded source
wavelet multiples. It is also demonstrated that the outlined algorithm is a highly beneficial tool in automating the

determination of source wavelet arrival times when only a primary wavelet is recorded.

1 INTRODUCTION

There is considerable interest in methods of
geotechnical in-situ engineering which enable shear
(S) and compression (P) wave velocities in the ground
to be accurately estimated. These measurements
provide insight into the response of soil to imposed
loads such as buildings, heavy equipment,
earthquakes, and explosions. The S-wave and P-wave
velocities are desired because they form the core of
mathematical theorems which describe the
elasticity/plasticity of soils and are used to predict
settlement, liquefaction, and failure (Finn (1984);
Andrus et al. (1999)). As such, accuracy in the
estimation of shear and compression waves velocities
is of paramount importance because these values are
squared during the calculation of geotechnical
parameters such as the Shear Modulus, Poisson’s
Ratio, and Young’s Modulus, among others.

The Seismic Cone Penetration Test (SCPT) (an
extension of the Cone Penetration Test (CPT)) was
devised to measure seismic velocities directly through
data obtained by installed seismic sensors in the cone
penetrometer, in addition to the standard bearing
pressure, sleeve friction, and pore pressure sensors
(Campanella et al. 1986). As the cone penetrometer is
advanced through the ground, using a pushing force,
the advance is halted at one meter (or other such

increment) intervals. When the cone is at rest, a
seismic event is generated at the surface using a
hammer blow or explosive charge, causing seismic
waves to propagate from the surface through the soil
to be detected by seismic sensors installed in the cone
penetrometer. This event is recorded and the
penetrometer is advanced another increment and the
process is repeated. By determining the seismic
arrival times interval seismic velocities are calculated
over the depth increment under study (Baziw (1993
and 2002) ).

In SCPT there are site conditions which may result
in source wavelet multiples. These multiples
complicate the recorded time series making the
selection of interval arrival times a difficult task. Two
examples of test environments which result in source
wavelet multiples are remediation sites which contain
concrete or stone columns and stratigraphic profiles

which contain significant impedances between
layering resulting in seismic source wavelet
reflections.

As previously stated, the source wavelet multiples
result in more complicated seismic time series. The
recorded output is mathematically represented as the
convolution of the source wavelet with the direct
primary wavelet and the reflection coefficients
between the different mediums present. The reflection
coefficient for a normal incident wavelet is given as:
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where R is defined as the reflection coefficient, p is the
medium density and V is the medium velocity and it
is assumed that the source wavelet travels from
medium 1 and is reflected at medium 2. The
mathematical representation of the convolution model
is represented as follows:
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where z(k) is the measurement, (i) is the reflectivity
sequence, S(7),1=0, 1, -- is a sequence associated with
the seismic source wavelet, and v(k) is the
measurement noise. This paper outlines a seismic cone
deconvolution algorithm where reflection coefficients
are extracted from the raw seismic time series so that
interval arrival times are more easily obtained for
source wavelet multiples. In addition, when only a
direct source wavelet is present in the recorded time
series, seismic deconvolution can simplify and
automate the determination of the source wavelet
arrival times.

2 SEISMICCONE DECONVOLUTION KALMAN
FILTER

The Kalman Filter is an optimal unbiased minimum
variance recursive filter which is based on state-space,
time-domain formulations of physical problems.
Application of this filter requires that the physical
problem be modified by a set of first order differential
equations which, with initial conditions, uniquely
define the system behaviour. The filter utilizes
knowledge of system and measurement dynamics,
assumed statistics of system noises and measurement
errors and statistical information about the initial
conditions. Figure 1 illustrates the essential relation
between the system, the measurements and the
Kalman Filter.

Figure 1 indicates the scope of information the KF
takes into account. As can be seen, the statistics of
the measurement and state errors are essential
components of the filter. The a priori information
provides for optimal use of any number, combination
and sequence of external measurements. The KF can
be applied to problems with linear time-varying
systems and with non-stationary system and

measurement statistics. Problems with nonlinearities
can be handled by linearizing the system and
measurement equations or by implementing particle
filtering. The Kalman Filter is readily applied to
estimation, smoothing and prediction.

Mendel (1983) has carried out extensive work in
fitting geophysical problems into state-space
representations for the purpose of seismic
deconvolution. By formulating the seismic cone
deconvolution problem into a state-space
representation allows for time variance of both the
seismic source wavelet and ambient background noise,
and modeling assumptions such as a minimum phase
source wavelet are avoided. In addition, the KF has
proven to be very robust in its ability to handle
approximations to the source wavelet and perform
well in high noise environments.

2.1 Standard Kalman Filter Governing Equations

In general terms, the Kalman Filter is a method for
estimating a state vector X from measurement z. The
state vector may be corrupted by a noise vector w and
the measurement vector is corrupted by a noise vector
v. The filter is applicable for systems that can be
described by a first order differential equation in x and
a linear (matrix) equation in z. The filter can be
described in both continuous and discrete form. The
continuous state and measurement equations are given
by egs. (3) and (4) as follows:
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Figure 1. Block diagram of system, measurement,
and Kalman Filter.
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where x is an n-vector, wis a p-vector, and z and v are
m-vectors. The random (vector) processes w and v are
assumed to be zero mean, white noise processes. It is
further assumed that w and v are statistically
independent of each other. The corresponding discrete
state and measurement equations are given by
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In egs. (5) and (6), symbol N denotes a normal
distribution with mean 0 and variance Q, and R,,
respectively. In addition, @ is defined as the State
Transition Matrix, T" is the Input Transition Matrix,
and H is the Measurement Matrix. The discrete
Kalman Filter estimation equations are outlined as
follows:
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The term ', &, -, in eq. (8) is referred to as the
Noise Covariance Matrix .

State Estimate Update:
L, =2,00+ &z, - H £, ()] ©)

Error Covariance Update:
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1 is the identity matrix in eq. (10).
Kalman Gain Matrix:
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Initial Conditions:
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The computational sequence for the discrete
Kalman Filter is outlined as follows:

A. At time index k = 0, specify initial conditions
%y, and Py, and compute @, and Q,.

B. At time index k=1, compute %,(-}, A (=), H, R,,

and the gain matrix K.
C. Using the measurement z, at time index k=1, the
best estimate of the state at k=1 is given by

Fii+) = £1(-) + Kz - Hifp(-)]
D. Update the error covariance matrix P,(+).

E. At time index k=2, a new measurement z, is
obtained and the computational cycle is repeated.

Smoothing is an off-line data processing procedure
that uses all measurements between 0 and 7T to
estimate a state at a time ¢ where 0 < ¢ < T (Gelb
1978). The smoothed estimate of x(t) based on all the

measurements between 0 and 7 is identified as
x(¢|T). There are three types of Kalman Filter

smoothers which are identified as follows:

Fixed-interval smoothing: the time interval of
measurements (i.e., the data span) is fixed, and we
seek optimal estimates at some, or perhaps all, interior
points.

Fixed-point smoothing: an estimate at a single fixed
point in time is obtained, and the data span time T is
assumed to increase indefinitely.

Fixed-lag smoothing: it 1s again assumed that T
increases indefiitely, but in this case we are interested
in an optimal estimate of the state at a fixed length of
time in the past (i.e., #T-a|T) with 6 held fixed).

In this paper we are interested in the
implementation of a Fixed-Interval Smoother for
seismic cone deconvolution. Mendel (1983) defines
the discrete optimal fixed-interval smoothed estimate
x(k | M) (where N = T/A and A is the sampling rate) as

follows:
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where k = N-1, N-2, -, I, and n x 1 vector r satisfies
the backward-recursive equation
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wherej =N, N-1, -, I and r(N+1 | N) = 0. Ineq. (14),
matrix £¥ is defined as
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The smoothing error covariance matrix Pk | N) is
defined as follows:
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where k = N-1, N-2, -, I, and nx n matrix S(j | N), the
covariance matrix of r(j | N), satisfies the following
backward-recursive equation:
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wherej = N, N-1, -, 1 and S(N+1 | N) = 0.

The computational sequence for the discrete fixed-
interval Kalman Filter smoother can be thought of as
a two pass process. In the first pass optimal real-time
state estimates are obtained by implementation of
previously outlines steps A to E. In the second pass
results from the first-pass estimates (i.e., x and 7 )are

reprocessed starting from time index N and utilizing
egs. (13) to (17).

2.2 Seismic Cone Deconvolution (SCD) Governing
Equations

The seismic convolution model outlined in eq. (2) may
be represented as an autoregressive moving average
process (ARMA) (Mendel (1983)). The ARMA model
is a combination of both an autoregressive (AR)
process and a moving average (MA) process. An AR
time series process is generated by a linear
combination of past observations plus a Gaussian
random variable. The MA process is generated by a
finite linear combination of past and present inputs
only. In the SCD algorithm the recorded source
wavelet and any possible multiples are modeled as an
ARMA process which is driven by a forcing function
defined as the in-situ direct wavelet and reflection
coefficients.

The first step in the SCD analysis is for the user to
specify the order of the ARMA process. For example,
the Z transform for a fourth order ARMA model is
outlined as follows:
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where the parameters b,, b,, b,, and b, define the MA
process coefficients, while the parameters a,, a,, a,,
and a, define the AR process coefficients. X(z) is the
Z transform of the seismic time series recorded and
U(z) is the Z transform of the direct wavelet and in-
situ reflection coefficients.

In eq. (18), the output x, ., is estimated on the basis
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The SCD state-space formulation is based upon the
technique utilized by Mendel (1983). Variable y/,,,
whose Z transform is Y/(z) is introduced into eq. (18)
resulting in the following expression:
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Equation numerator and denominator terms in eq. (20)
gives the following two expressions:
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By choosing x/, =yli,, x2, =yl,., x3,=yl,., and x4,
= yl,,; we can fit egs. (21a) and (21b) into a state-
space formulation as follows:
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where the direct source wavelet and reflection
coefficients p, are defined as E [/r;; ;@] = k- AL Wy

is a Gaussian white noise processes with mean zero
and time-variant variance of Q,.
The discrete measurement equation is given as

g
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The computational sequence for the discrete SCD is
outlined as follows:

F. Specify order of the convolution ARMA process
and derive coefficients (e.g., a,, a,, a; a, b, b, b,



and b, - subsequently addressed in this paper).

G. Define state-space matrix equation (i.e., eq. (22))
and measurement equation (i.e., eq. (23)).

H. Obtained estimates of'the filtered states (i.e., x ) by

implementing previously outlined Kalman Filter steps
A to E.

I. Obtained smoothed estimates (i.e., eqs. (13) and
(14)) by utilizing the values derived for xawnd Fin
step H and utilizing egs. (13) to (17).

J. Derive reflection coefficients by implementing
(Mendel (1983)):

Ak N) = HEIT " (e + 1) (24)

The state-space formulation outlined in eq. (22)
could also be modified to accommodate a more
complicated ambient noise process as opposed to the
assumed white measurement noise (Baziw and Weir-
Jones (2002)). For example, a Gauss-Markov process
can be used to describe many physical phenomena and
is a good candidate to model possible seismic cone
ambient measurement noise.

The Gauss-Markov process has a relatively simple
mathematical description. As in the case of all
stationary Gaussian processes, specification of the
process autocorrelation completely defines the
process. The variance, o’, and time constant, 7', (ie.,
B= 1/T), define the first-order Gauss-Markov process.
The SCD state-space formulation is simply augmented
with the discrete formulation of the Gauss-Markov
process so that more structure is provided to the
measurement noise.

2.3 Estimating the ARMA Parameters for a Seismic
Cone Source Wavelet

As previously stated, the first step in the SCD
algorithm is for the user to determine the order of the
ARMA process and subsequently derive the necessary
model parameters. This portion of the SCD analysis is
referred to as system identification. The maximum-
likelihood of approximating the true source wavelet
with an ARMA model increases monotonically with
increasing system order, while the computational cost
of increasing the system order is proportional to n’
where n is the ARMA model order (Mendel 1983). In
general terms, the process of determining the ARMA
model order is a trial and error approach. In this
analysis, the investigator chooses a model which has
the smallest number of parameters while meeting a
performance index requirement that measures how
well the ARMA model fits the actual in-situ model.

The technique utilized by the author in deriving the
ARMA model parameters is based upon the work of
Ogata(1987). Inthis approach to system identification,
a least squares cost function which is defined as the
difference between the ARMA model response and the
corresponding experimental response is minimized.

2.3.1 ARMA Parameter Estimation by the Least
Squares Method

The derivation of the ARMA model parameters by

utilizing a least squares method is demonstrated by

again considering the 4™ order (i.e., n = 4) ARMA

model given in eq. (18). If the numerator and

denominator of eq. (18) is multiplied by z#, we obtain
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where x; is the estimated value of x,.

The error between the estimated output value and
actual output value is defined as follows:

£y = Xy Xy (27)

Since x, depends on past data up to n sampling
periods earlier, the error €, is defined only for k£ >n. By
substituting eq. (26) and k = n, n+1, - N into eq. (27)
and combining the resulting N-n+/ equations into
vector-matrix equation, we obtain:

Xy~ Cud, * 4y (28)

where x,, = [x, x5 - x\/, ay = [-a,, -a,, -a;, -a, b,, b,,
b, b,], ey = [e, &5 ¢y], and Cy, is defined as:
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The least squares performance index is defined as:
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The least squares method involves minimizing eq. (29)
such that the ARMA parameter values will best fit the
observed data. In Ogata’s formulation it is assumed
that the input sequence {p,}! is such that for N>4,
C,/ Cy is nonsingular. Ogata shows that the optimal
estimate of g, is defined as:

(30)

In eq. (30) it is required that {u,} is sufficiently time-
varying so that C,/C, is nonsingular.

Equation (30) is a first best estimate (in a least
squares sense) of the ARMA parameters. Ogata
presents a subsequent recursive formulation for the
estimate of ARMA parameters utilizing eq. (30) as an
initial estimate. The recursive least square estimation
is defined as
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The method utilized by the author for determining
the ARMA parameters for the source wavelet is to first
convolve the isolated wavelet with a highly variable
and known white noise process with mean zero and
unity variance. This insures that {p,} is sufficiently
time-varying so that C,/C, is nonsingular. Initial
estimates of the ARMA parameters are obtained by
implementation of eq. (30), known {p,}, and the
convolved output sequence {y,}. The initial estimates

ofd 5 are then feed into the recursive estimation

equation defined by eq. (31) until the performance
index (eq. (29)) reaches a predefined minimum.

3 EVALUATING THE SCD ALGORITHM WITH
SIMULATED FINITE DIFFERENCE DATA

This section presents test bed simulation results when
implementing the optimal estimation algorithm
previously outlined. The first step in the simulation
was to define a seismic source wavelet. Amini and
Howie (2003) utilized a finite difference program
(FLAC) to model the in-situ seismic cone wavelets.
Figure 2 illustrates the simulated source wavelet
generated by Amini and Howie (2003) obtained by
personal communication. SCPT has the very beneficial
feature in that the SH source wavelet is highly
repeatable from site to site and its basic form is
consistent through out a seismic profile except for the
reduction in amplitude due to geometric spreading.
The wavelet shown in Fig. 2 was generated by
assuming a uniform halfspace with an in-situ shear
wave velocity of 180 m/s and a sampling rate of 0.02
ms.
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Figure 2. Finite difference simulate source wavelet.

The algorithm outlined in Section 2.3.1 was then
implemented on the data illustrated in Fig. 2. In
deriving the necessary ARMA parameters a 5™ order
AR and MA were utilized with a data compression
ratio of 16 to 1 so that the sampling rate became 0.32
ms. In addition, it was found that ARMA model
estimation algorithm worked best when the source
wavelet was time reversed. The only impact that time
reversing the source wavelet has on the SCD
algorithm is that the recorded seismic time series must
be time reversed when processing. Figure 3 illustrates
the results of the ARMA estimation of the time
reversed source wavelet shown in Fig. 2.

The estimated ARMA model is then convolved
with the impedance structure illustrated in Fig. 4 to
give the output shown in Fig. 5.
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Figure 3. Estimating source wavelet in Fig. 2 with

5™ order ARMA model
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Figure 4. Reflection coefficients utilized to test the
performance of the SCD algorithm.
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Figure 5. Output after convolving ARMA wavelet
with reflection coefficients shown in Fig. 4.

If the SCD algorithm outlined in Section 2.2 is
applied to the seismic data shown in Fig. 5, the
reflection coefficients illustrated in Fig. 4 are
recovered exactly.

Gauss-Markov noise is then added to the seismic
data shown in Fig. 5 where a time constant of 7, =
0.02 ms and standard deviation of ¢ = 0.002 were
specified. The SCD algorithm derived the output
shown in Fig. 6. As is illustrated in Fig. 6 the arrival
time location of the reflection coefficients is recovered
exactly but there is some degradation in the estimation
of the amplitudes. The SCD algorithm gives accurate
estimates of the relative amplitudes of reflection
coefficients.

The SCD algorithm was next tested for its ability to
derive the reflection coefficients within a high noise
environment. Figure 7 shows the seismic data of Fig.
5 with Gauss-Markov noise of 7, = 0.02 ms and o =
0.08 added.

The SCD algorithm derived the estimates
illustrated in Fig 8. As is shown in Fig. 8, the arrival
time location ofthe reflection coefficients is recovered

exactly but the algorithm fails to determine the
amplitudes. The SCD algorithm gives accurate
estimates of the relative amplitudes of the reflection
coefficients which facilitates the investigator to
recover the true amplitudes.
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Figure 6. SCD estimated reflection coefficients.
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Figure 7. Seismic data of Fig. 5 with Gauss-Markov
noise of T, = 0.02 ms and o = 0.08 added.

Figure 9 shows the SCD output for the data derived
when the true time reversed wavelet of Fig. 2 is
convolved with the reflection coefficients in Fig. 4 and
Gauss-Markov noise of 7. = 0.02 ms and o = 0.08 is
added. The SCD algorithm provided very similar
results to those illustrated in Fig. 8.
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Figure 8. SCD estimated reflection coefficients for
data shown in Fig. 7.
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Figure 9. SCD estimated reflection coefficients
when the source wavelet illustrated in Fig. 2 is
utilized.

The SCD algorithm was next tested for its ability to
extract the primary wavelet and the reflection

coefficients when only a portion of the source wavelet
is modeled. Figure 10 shows a 4™ order AR and MA



approximation to the portion of the time reversed
source wavelet shown in Fig. 2. In this case the data
was compressed at a 4 to 1 ratio resulting ina 0.08 ms
sampling rate.
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Figure 10. 4" order ARMA approximation to portion
of source wavelet shown in Fig. 2.

Figure 11 illustrates the SCD estimated reflection
coefficients from the data shown in Fig. 7 (true time
reversed wavelet utilized) and when only a portion of
the time reversed source wavelet was modeled as
illustrated in Fig. 10. As is shown in Figure 11 the
SCD algorithm recovered the exact time location (time
shifted by constant amount due to truncated wavelet
approximation) when only a portion of the source
wavelet was modeled.
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Figure 11. Estimated reflection coefficients when
4™ order ARMA model utilized.

Figure 12 illustrates the ability of the SCD algorithm
to simplify and automate the determination of the
source wavelet arrival times when only a primary
wavelet is present.

4 CONCLUSIONS

In SCPT there are site conditions which may result in
source wavelet multiples. These multiples complicate
the recorded time series making the selection of
interval arrival times a difficult task. This paper
outlined a state-space smoothing Kalman Filter
algorithm which deconvolves impedance structures
from source wavelets by modeling the convolution
process as an ARMA model. The ability to obtain the
in-situ reflection coefficients from multiples and/or
reflections allows the investigator to map out under
ground structures.

The SCD algorithm was demonstrated to be highly
robust and accurate when utilizing approximations to
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Figure 12. Estimating source wavelet arrival times
from vertical seismic profile using SCD algorithm.

the source wavelet and in high noise environments. In
addition, when only a direct source wavelet is present
in the recorded time series, the SCD algorithm
significantly simplified and automated the
determination of the source wavelet arrival times.
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