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Abstract—This paper outlines a more powerful formulation of
a previously published new concept in blind seismic deconvo-
lution, referred to as principle phase decomposition (PPD). In
this new PPD filter formulation, an iterative forward modeling
(IFM) algorithm is incorporated, which facilitates the estimation
of parameters defining the source wave (i.e., dominant frequency,
phase, and decay) and the overlapping source waves (i.e., reflection
coefficients’ corresponding arrival times and amplitudes). This
IFM integrated PPD algorithm allows for a significantly more ac-
curate approach in estimating the source wave and corresponding
reflection series compared to the previously published technique
of sequentially estimating the source wave and overlapping source
waves utilizing a Rao-Blackwellized particle filter. In general
terms, the source wave is modeled as an amplitude-modulated
sinusoid, and the overlapping source waves are treated as known
inputs within the Kalman filter formulation based on the cur-
rent source wave and reflection series IFM parameter estimates.
The source wave and reflection series parameters are obtained
by iteratively minimizing a cost function defined to be the rms
difference between the measured seismogram and the synthesized
seismogram within the IFM algorithm.

Index Terms—Blind deconvolution, iterative forward modeling
(IFM), Kalman filter, parameter estimation.

[. INTRODUCTION

N SEISMOLOGY, the most important seismic model is, in
general, written as [1]

z(t) = S(t) * p(t) + v() (1)
where

z(t) measured seismogram;

S(t) seismic wave, which is a superposition of the
Earth and instrument responses;

pu(t) reflectivity of the Earth, which consists of
all primary reflections as well as all surface and
internal multiples;

v(t) additive noise, generally taken to be white with
a Gaussian pdf;

* denotes the convolution operation.
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A fundamental task for the seismologist is to estimate the
impedance at depth from the recorded seismogram. A com-
monly adopted simple model in applied seismology is that of
a horizontally layered 1-D Earth, referred to as the Goupillaud
layered medium [1]. Here, the impedance of the kth layer of the
pancake Earth model is defined as

ek = Pk Vk (2)

where p;. and Vj, are the density and velocity in the kth layer,
respectively. The relationship between £ and p;, which 1s the
reflection coefficient (assuming only a primary reflection) of the
kth layer, is

Ek+1 — &k :

Pk = ———— (3)
Ek+1 T Ek

Rearranging (3) gives
k
1+ /1'1\-) (1 + #j)
ksl = Ek =€ : (4)
wi=a () =a Il (724

Therefore, it is required to estimate the reflection series i
in order to determine £;. In extracting the reflection series,
therefore, the source wave must first be estimated and then
deconvolved from the recorded seismogram.

An alternative mathematical representation of the recorded
time series z(t), defined in (1), is given as

t

z(t) = //_L(T)S(t — 7)dT + v(t). (5)

(o]

The discrete representation of (5) is given as
k
2(k)=> p(i)S (k—(i—1))+v(k), k=1,2,....,N (6)
i=1

where N is the length of the time series.

As previously stated, the primary goal of seismic deconvo-
lution is to remove the characteristics of the source wave from
the recorded seismic time series so that one is ideally left with
only the reflection coefficients. The reflection coefficients iden-
tify and quantify the impedance mismatches between different
geological layers that are of great interest to the geophysicist.
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(3]

A very challenging and yet common seismic deconvolution
problem is when the source wave is unknown and has the
potential for time variation. This is referred to as blind seismic
deconvolution (BSD), and it identifies the case where we have
one known (measured seismogram with additive noise) and two
unknowns (source wave and reflection coefficients).

There are many techniques in seismic deconvolution that can
be implemented so that an optimal estimate is made of the
Earth model. The majority of the standard seismic deconvolu-
tion methods utilize the steady-state Wiener digital filter that
assumes a minimum phase source wave [2]. Other techniques
implement inverse theory, minimum entropy deconvolution,
adaptive deconvolution, complex cepstrum deconvolution, and
independent component analysis. Many of these deconvolution
techniques are ad hoc in nature [3], [4], they are affected by
the band-limited nature of the source wave, they are highly
susceptible to additive measurement noise, and they assume
that the source wave is stationary.

In [5], an innovative and powerful algorithm for solving the
BSD problem was introduced based on the Bayesian recursive
estimation (BRE). The algorithm is referred to as principle
phase decomposition (PPD). In this algorithm, all of the associ-
ated filters of BRE (hidden Markov model filter, Kalman Filter,
particle filter, Rao—Blackwellized particle filter (RBPF), and
jump Markov systems) have been incorporated. Moreover, the
source waves are modeled as amplitude-modulated sinusoids
(AMSs) embedded within Gauss—Markov measurement noise,
and the blind deconvolution is carried out by initially deter-
mining the seismogram’s principle phase components. Once the
principle phases are determined, an RBPF algorithm is utilized
to separate the corresponding overlapping source waves.

The PPD algorithm outlined in [5] was shown to have
many advantages since it allows for simple filter formula-
tion with minimal parameter specification, and it is conducive
to BSD. Moreover, the assumption of the minimum phase
source wave is not required. The algorithm avoids problems
associated with band-limited source waves when carrying out
frequency-domain deconvolution and easily handles nonsta-
tionary source waves while providing time-variant estimations
of the source wave. Finally, reflection coefficients are not re-
quired to be represented by discrete state levels, and a whiteness
assumption governing the reflection coefficient series is not
required.

However, the major drawback of the PPD algorithm outlined
in [5] is that the investigator is required to initially specify the
phases of the overlapping source waves. To circumvent this
shortcoming, a variant of the PPD technique, which is the so-
called PPD-WE algorithm, was outlined [6]. In this algorithm,
the overlapping source waves are sequentially and chronologi-
cally extracted from the seismogram under analysis. As clearly
outlined in [6], a limitation of the PPD-WE technique is that it
has difficulty if either the overlapping source waves have or the
overall seismogram response has phase components similar to
the source wave to be extracted. Furthermore, there is a gradual
decrease in the quality of the estimated source waves due to the
fact that any errors generated during the source wave extraction
process are propagated as the seismogram is sequentially and
chronologically processed.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

To overcome the aforementioned PPD algorithm limitations,
a new formulation is outlined in this paper, whereby an iterative
forward modeling (IFM) algorithm is incorporated into the
PPD technique, which allows for a significantly more accurate
estimation of the source wave and corresponding reflection
coefficients. This formulation of the PPD algorithm is referred
to as the PPD-IFM technique. A fundamental component of the
PPD-IFM algorithm (and all variations of the PPD algorithm)
is that the overlapping source waves are modeled as AMSs
and that the discrete convolution operation outlined in (6) can
be represented as the summation of several source waves of
differing arrival times. The formulation of the PPD algorithm
[S5], [6] has been credited with the introduction of particle
filtering into BSD [7].

[I. BACKGROUND
A. AMS

In all variations of the PPD algorithm, an innovative model of
the source wave is utilized. This source wave model is referred
to as the AMS [5], [6], [8], [9]. The AMS is demonstrated
to be a highly robust and accurate approximation of many
analytical representations of seismic source waves such as
the exponentially decaying cyclic waveform, the mixed-phase
Berlage wave, the zero-phase Ricker wave, and the zero-phase
Klauder wave. In addition, the AMS wave has proven to be
very accurate in modeling seismic data acquired during passive
seismic monitoring and vertical seismic profiling.

For completeness, a review of the AMS wave is given along
with the simulated and real examples. The mathematical repre-
sentation of the AMS source wave is given as

z1(t) = xo(t) sinfwt + @] (7)

where z(t) is an approximation of the seismic source wave,
xo(t) is the seismic wave’s amplitude-modulating term (AMT),
w 18 the dominant frequency of the wave, and ¢ is the corre-
sponding phase.

In [5], the robustness of the AMS model was demonstrated
by considering the zero-phase Ricker wave. The Ricker wave is
mathematically represented in the time domain as

2

F(t)=Ag(1—2m202,(t—19)2) e (MW (E40)?) - ¢>4 (8)
where Ay = wave maximum amplitude (centered between two
flanking lobes), v sy= dominant or peak frequency of the Ricker
wave, and ¢y = wave arrival time of the maximum amplitude.
Although the Ricker wave has a peak frequency, it does not
have a specific sinusoidal term, and as was shown in [5],
the AMS model was able to reconstruct the desired wave by
applying an appropriate AMT.

Another analytical model of the seismic source wave is the
Berlage wave. The Berlage wave is defined as

w(t) = AH(t)t"e “ cos(2m ft + @) 9)

where H(t) is the Heaviside unit step function [H(t) =0
fort < 0and H(t) =1 for t > 0]. The amplitude-modulation

component is controlled by two factors: the exponential decay
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Fig. 1. Berlage wave with superimposed 55-Hz sinusoid.
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Fig. 2. Finite-difference source wave with a superimposed 140-Hz sinusoid
and an exponential decay with a rate of 0.8/ms.
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AMS real data example recorded during an SCPT.
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Fig. 4. Seismic trace in Fig. 3 with a 10-150-Hz frequency filter applied and
a 73-Hz sinusoid superimposed.

term « and the time exponent . These parameters are consid-
ered to be nonnegative real constants. Fig. 1 shows a Berlage
wave with f = 55 Hz, n = 2, a = 168, and ¢ = 168°. Super-
imposed upon the Berlage wave is a scaled 55-Hz sinusoid with
zero crossing at 11.2 ms. As shown in Fig. 1, the Berlage source
wave is an AMS.

Amini and Howie [11], [12] utilized a finite-difference pro-
gram (FLAC) to model downhole seismic source waves. Fig. 2
shows the simulated source wave generated by Amini and
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Fig. 5. AMS real data example recorded at a depth of 30 m during an SCPT.
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Fig. 6. Seismic trace in Fig. 5 with a 10-150-Hz frequency filter applied and
a 74-Hz sinusoid superimposed.
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Fig. 7. Absolute amplitudes of the filtered trace shown in Fig. 6 with a
superimposed exponential decay with a rate of 0.3/ms.

Howie obtained by personal communication. The source wave
shown in Fig. 2 was generated by assuming a uniform halfspace
with an in situ shear wave velocity of 180 m/s and a sampling
interval of 0.02 ms. Superimposed upon the finite-difference
source wave is a scaled 140-Hz sinusoid with zero crossing at
10.3 ms. Also, superimposed upon the source wave shown in
Fig. 2 is an exponential decay peaking at 15 ms and decaying at
an exponential rate of 0.8/ms. Fig. 2 shows the three parameters
which define the AMS source wave. These parameters are
outlined as follows:

w source wave’s dominant frequency;
offset time from the arrival time of the source
wave (t;) when the sinusoidal component com-
mences. This parameter is inherently related to the
phase ¢ due to the fact that the arrival time of
the source wave (ty) is readily obtained from the
seismogram;
h exponential decay rate of the source wave.

tOffset



AMS real data examples are provided from downhole seis-
mic data captured during a seismic cone penetration test
(SCPT) [13]-[15]. The SCPT is utilized extensively in geotech-
nical in situ P-wave and S-wave site characterization. The SCPT
real data examples were captured with high-precision and high-
bandwidth (1 Hz-10 kHz) piezoelectric accelerometers that
have an operational amplifier integrated within the sensor [14].
The piezoelectric accelerometers have highly desirable rise and
decay times of approximately 5 ps. These fast rise and decay
times result in recorded traces where the input of acoustic waves
and ambient noise are recorded with minimal or no sensor
distortion [14].

Fig. 3 shows the noisy SCPT data recorded at a depth of
15 m. The high noise energy is due to the high-frequency
rod noise traveling down the steel extension rods and due
to the close radial proximity of the source [13]-[16]. Fig. 4
shows the seismic data shown in Fig. 3 superimposed upon the
same seismic trace filtered with a zero-phase-shift eighth-order
Butterworth 10-150-Hz bandpass filter applied [15]. Also, su-
perimposed upon the filtered seismic trace is a 73-Hz sinusoid.
As shown in Fig. 4, the real SCPT source wave can be modeled
as an AMS.

Fig. 5 illustrates another real data example of a noisy SCPT
seismic data trace recorded at a depth of 30 m. Fig. 6 illus-
trates the seismic data shown in Fig. 5 superimposed upon the
same seismic trace filtered with a zero-phase-shift eighth-order
Butterworth 10-150-Hz bandpass filter applied. Also, super-
imposed upon the filtered seismic trace is a 74-Hz sinusoid.
Fig. 7 illustrates the absolute amplitudes of the filtered trace
shown in Fig. 6 with an exponential decay peaking at 174.5 ms
and decaying at an exponential rate of 0.3/ms. As shown in
Figs. 6 and 7, the real SCPT source wave can be modeled as
an AMS.

B. Kalman Filter Governing Equations

In [3]-[6], [8], [9], and [12], the details of the BRE technique
of Kalman filtering (KF) are outlined along with the governing
equations. The KF governing equations for a known input are
outlined in [5, Table I] .

It is assumed that there are very low measurement noise and
process noise (i.e., Q; — 0 and R; — 0) within the PPD-IFM
algorithm. This i1s due to the fact that the seismic data can
be preprocessed, as shown in Figs. 4 and 6, prior to inputting
the seismogram into the PPD-IFM algorithm. For the case
where Q,. — 0 and R;, — 0 and for a single-state estimation
problem (only estimating the AMT component of the AMS
source wave), the KF governing equations are simplified as
outlined in Table I.

In Table 1, x;. denotes the state (AMT) to be estimated, F}._,
denotes the state transition matrix which describes the system
dynamics, uy_; denotes a known deterministic time-varying in-
put, Ax_; describes the relationship between x; and u;_1, and
Hj. defines the relationship between the state and the available
measurement (seismogram time series). The implementation of
(10) to (15) is outlined in detail in [3]-[6], [8], [9], and [12].
In general terms, (12) and (13) are used to predict the state
and measurement, innovation (14) is then calculated (difference
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TABLE 1
SIMPLIFIED KF GOVERNING EQUATIONS FOR KNOWN INPUTS

Mathematical E
Description Representation %
System equation. Xe = Fp g xp A uy 10
Measurement equation. y = Hyxy 11
State estimate Xieor = Frp Xpem ¥ Aty | 12
extrapolation.
Measurement e = Hp Xy 13
extrapolation.
Innovation. Ay =24 — 2 14
State estimate update. Yo =X +AH, 15

between the actual and predicted measurements), and the state
1s updated by adding the predicted value (12) with the weighted
innovation Ay / Hy..

C. IFM

IFM is a parameter estimation technique that is based
on iteratively adjusting the parameters until a user-specified
cost function is minimized. The desired parameter estimates
are defined as those which minimize the user-specified cost
function.

The IFM technique which is utilized within the PPD-IFM
algorithm is the downhill simplex method (DSM) originally
developed by Nelder and Mead [17]. The DSM in multi-
dimensions has the important property of not requiring deriv-
atives of function evaluations, and it can minimize nonlinear
functions of more than one independent variables. Although it
is not the most efficient optimization procedure, the DSM is
versatile, robust, and simple to implement.

A simplex defines the most elementary geometric figure
of a given dimension: a line in one dimension, a triangle in
two dimensions, a tetrahedron in three, etc. Therefore, in an
N-dimensional space, the simplex is a geometric figure that
consists of N + 1 fully interconnected vertices [16]-[18]. For
example, in determining the location of a seismic event, a 3-D
space is searched, so the simplex is a tetrahedron with four
vertices.

The DSM starts at N + 1 vertices that form the initial sim-
plex. The initial simplex vertices are chosen so that the simplex
occupies a good portion of the solution space. In addition, it
1s also required that a scalar cost function be specified at each
vertex of the simplex.

The general idea of the minimization is to keep the minimum
within the simplex during the optimization, decreasing the
volume of the simplex at the same time. The DSM searches for
the minimum of the cost function by taking a series of steps,
each time moving a point in the simplex away from where
the cost function is largest. The simplex moves in space by
variously reflecting, expanding, contracting, or shrinking. The
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simplex size is continuously changed and mostly diminished so
that, finally, it is small enough to contain the minimum with the
desired accuracy.

The DSM incorporates the following basic steps [16], [18].

1) Specify the initial simplex vertices.

2) Specify the cost function at each vertex of the simplex.

3) Compare the cost function for each vertex, and determine
the lowest error “best” and highest error “worst™ vertices.

4) Sequentially locating first the reflected, then, if neces-
sary, the expanded, and then, if necessary, the contracted
vertices; calculating for each of the corresponding cost
function; and comparing it to the worst vertex. If, at any
step, the cost function of the new trial point is less than
the value at the worst vertex, then this vertex 1s substituted
as a vertex in place of the current worst vertex.

5) If the process in step 4 does not yield a lower error
value than the previous worst, then the other vertices are
shrunken toward the best vertex.

6) Ateach stage of shrinking, the distances between vertices
are calculated and compared to a set tolerance value to
check if the simplex has become sufficiently small for
the termination of the estimation. When the test crite-
rion is reached, the previous best vertex becomes the
solution.

7) At each stage of shrinking, the cost function values at
the vertices are compared to a set minimum value to
check if the error residual has become sufficiently small
for the termination of the estimation. When the test
criterion is reached, the previous best vertex becomes the
solution.

[II. PPD-IFM ALGORITHM OUTLINE

The PPD-IFM algorithm makes use of the AMS source
model, the simplified KF governing equations outlined in
Table I, and the previously outlined IFM technique. In the im-
plementation of the PPD-IFM algorithm, there are three param-
eters to be specified a priori: 1) The maximum possible length
of the source wave (7},,ax ); 2) the maximum number of possible
overlapping source waves (/Ny,ax); and 3) the minimum time
separation between the reflection coefficients (RT},i,). The
parameter 7},,. 1S an approximate variable, and it typically
does not exceed 2.57", where 7' is the corresponding period of
the dominant frequency of the source wave. For example, the
Ricker wave [5] has a time duration of approximately 1.57,
the finite-difference source wave of Amini and Howie [11],
[12] has an approximate source wave time length of 1.57°, and
the downhole seismic source waves in Figs. 3 and 5 have time
durations of approximately 1.77" and 1.57", respectively. T},,.x
is specified due to the fact that we are attempting to estimate the
source wave, and it is only required to process 7},,,x amount of
seismogram data from the initial onset of the source wave.

Parameter V. 1s required because it determines the max-
imum number of parameters that are to be estimated within
the IFM portion of the PPD-IFM algorithm. Parameter V.«
defines the maximum number of reflection coefficients within
the source wave time span. N, does not reflect the total
number of reflection coefficients within the seismogram but the
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Fig. 8. [Illustrating the concept behind parameters Tiax and Nyax.
maximum number of reflection coefficients which can reside
within the time duration of the source wave. This concept is
shown in Fig. 8, where a source wave is superimposed upon
a series of reflection coefficients. As shown in Fig. 8, there
are a total of 15 reflection coefficients within the 110-ms time
span. The source wave shown in Fig. 8 has a time duration of
approximately 32 ms, and only five reflection coefficients can
reside within that time span. Since it is very unlikely that there
are more reflection coefficients in a source wave, the default
value of N, . 18 set at five.

Parameter RT),;, allows constraining of the PPD-IFM
algorithm solution space. For example, the reflection
coefficients Ry, Ry, Ro, R3, ..., Rx must arrive subsequently
later within the time series (i.e., t; <ty < t3...,txN) based on
the physics of reflection seismology. Parameter R7,;, allows
the investigator to set the minimum allowable time separation
between the reflection coefficients. As expected, for smaller
values of parameters 7},,x and N,,. and for a larger value of
RT in, there is a corresponding reduced CPU requirement for
processing the seismic data.

In shallow and deep reflection seismology, it is reasonable to
assume that there will be a maximum of three to four overlap-
ping source waves recorded within the seismogram (Nyax =
3 or 4). For example, Sheriff and Geldart [19] demonstrate
that the expected vertical resolution of a noise-free reflection
seismic survey is A/4, where A defines the wavelength of
the source wave. For shallow investigations (20-100 m), it is
reasonable to assume a dominant compression source wave
frequency (f) of approximately 100 Hz (7' = 1/f = 10 ms)
and a corresponding velocity (Vp) of 1500 m/s. Based on these
parameters, the calculated vertical resolution is 3.75 m (note:
A = V/f). The associated two-way travel time (At) of the
source wave for a vertical resolution of 3.75 m i1s 5 ms (i.e.,
At =2 3.75/V). The assumed source wave time length of
two times the period (2 * T" = 2/ f) is 20 ms. This implies that
there could be a maximum of three overlapping source waves
for a vertical resolution of 3.75 m. A similar calculation can
be made for a deep reflection (500 m to 5 Km) survey, where
Vp, = 3000 to 5000 m/s and f ~ 50 Hz[19].

The specification of parameter RT),;, allows the investigator
to exceed Sheriff’s and Geldart’s \/4 vertical resolution and
makes the PPD-IFM algorithm ideal in identifying thin bed
layering. For example, if Vp = 1500 m/s and f = 100 Hz, then
A =15 m. If RT,,;, = 3 ms, the source wave travels 4.5 m.
If we consider a two-way travel time, then the layer interval
thickness would be 4.5 m/2 = 2.25 m. This exceeds Sheriff’s
and Geldart’s defined resolution of a noise-free reflection seis-
mic survey (A/4 = 3.75 m) by 1.5 m or 40%. Alternatively, if



a minimum reflection coefficient separation of 2 ms is specified
and a two-way travel is considered, then a layer thickness of
1.5 m could be resolved. This equates to a 60% improvement in
the expected vertical resolution of 3.75 m.

If Vp=4000 m/s and f = 50 Hz, A = 80 m. In 3 ms, the
source wave travels 12 m. If we consider a two-way travel time,
then the layer interval thickness would be 12 m/2 = 6 m. This
exceeds Sheriff’s and Geldart’s defined resolution of a noise-
free reflection seismic survey (A/4 = 20 m) by 14 m or 70%.
Alternatively, if a minimum reflection coefficient separation of
2 ms is specified and a two-way travel is considered, then a
layer thickness of 4 m could be resolved. This equates to an
80% improvement in the expected vertical resolution of 20 m.

The maximum resolution (i.e., minimum R7,;, specifica-
tion) capability of the PPD-IFM algorithm is dependent on
the PPD-IFM input parameter values such as the user-specified
dominant frequency analysis window and the properties of the
additive measurement noise. Although RT,,;, < 3 ms values
have been typically specified when processing varying syn-
thetic seismograms, it is the intention of the author to explore
and quantify this issue further in a subsequent paper.

Fig. 2 shows the three fundamental source wave parameters
of w, tofset, and h. The reflection coefficients’ parameters are
the arrival times and corresponding amplitudes. If we assume
a maximum of five overlapping source waves to be estimated,
then the required 12 PPD-IFM parameters to be estimated
are w, tomset (note: the sinusoidal arrival time is defined as
t(/) = to + tofiset), N, Ro, R1, R, R3, Ry, t1, t2, t3, and t4.
These parameters are iteratively adjusted within the [FM DSM
algorithm until the cost function is minimized. The desired pa-
rameter estimates are defined as those which minimize the cost
function. The cost function is defined to be the rms difference
between the estimated seismogram and the true seismogram
over time window % (source wave arrival time) to tg + T nax-

In the KF portion of the PPD-IFM algorithm, the single state
that is to be estimated is the AMT component of the AMS
source wave. The overlapping source waves are modeled as
known inputs based upon the IFM arrivals and amplitudes of
the reflection coefficients and the proceeding time estimates
of the AMT. In simplistic terms, the processed seismogram
is assumed to be composed of up to five overlapping time
invariant source waves, and we are attempting to estimate the
AMT component of the source wave utilizing the simplified KF.

In discrete form, the AMS equation of (7) is given as

AMS;. = AMTy. sin[2n fAk + ¢|. (16)

In (16), k denotes the time index, f is the dominant fre-
quency, A is the sampling rate, and ¢ is the phase of the AMS
source wave. In [6], it is clearly outlined how the phase of
the source wave is readily determined from the arrival time

t(/) = to + tomset and the dominant frequency. The reflection
coefficients are defined to be a scaled version of the maximum
amplitude of the estimated source wave and are defined to
reside within the bounds 0 < R < 1. The overlapping source
waves are processed in chronological order and are assumed to
be offset by not less than the parameter R7,,;,,. The KF portion
of the PPD-IFM algorithm is outlined in Table II.
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As outlined in Table II, the KF PPD-IFM filter is utilized
to determine the cost function for a particular set of source
wave and reflection series input parameters. In addition to the
requirement that the maximum resides within 1.57" of the onset
of the source wave, there are several other AMT checks that
can be made for code optimization (i.e., early exit from the KF
algorithm) due to the fact the KF is a recursive filter. Some
examples of the in-line checks which can be carried out are
outlined as follows.

1) There should not be a widely fluctuating AMT.

2) A new maximum should not occur after AMTmax.

3) At time T),.x from the arrival time (#;) of the source
wave, we would expect that the AMT amplitude should
have decayed significantly from AMT,, .« (i.e., < 5%).

4) There are minimum and maximum bounds on the decay
of the source wave.

The sign of the reflection coefficients in Table II is deter-
mined in-line by processing the data over time span RT,;,
and by determining which sign (£ R) results in the minimum
residual error over RT i,

There are three stages of analysis within the PPD-IFM al-
gorithm. In the first two stages of analysis, a coarse sampling
rate (Ac) is utilized, where there is minimum of 22 samples/T’,
with 7" = 1/ f. The initial coarse sampling rate is implemented
to considerably reduce the CPU requirements. The last stage of
the analysis utilized the true sampling rate of the inputted time
series.

The three stages of the PPD-IFM analysis are outlined as
follows.

1) Utilize a coarse sampling rate (Ac) with the IFM portion
of the PPD-IFM not implemented. Determine top (S; =
400) source wave and reflection series parameter esti-
mates which result in minimum cost function residuals.
Sort error residuals from smallest to largest.

2) Based on the results in stepl (S; = 400) and on a coarse
sampling rate, determine top (S2 = 50) source wave and
reflection series parameter estimates which result in mini-
mum cost function residuals. In this stage of the analysis,
the IFM algorithm is implemented. Sort error residuals
from smallest to largest.

3) Based on the results in step 2 and on the true sampling
rate, determine top (S3 = 10) source wave and reflection
series parameter estimates which result in minimum cost
function residuals. In this stage of the analysis, the IFM
algorithm is again implemented. Sort error residuals from
smallest to largest.

In steps 1 to 3 outlined earlier, S 2 3 denotes the total amount
of model space samples for each stage of the analysis.

The PPD-IFM algorithm is implemented in three stages. This
1s due to the fact that there are many local minima of the cost
function which can occur for various values of w, togset, N,
Ry, Ry, Rs, Rs, Ry, ty, to, t3, and t4. The first stage of the
analysis optimally polls through the possible parameter values
utilizing nested while loops, the iterative analysis windows
(e.g., £2 Hz for f, £2 ms for arrival times, 0 <, gor <
T/2,and 0 < R < 1), and the user-specified minimum ( f,,iy,)
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TABLE 1I
KF PPD-IFM FILTER FORMULATION

Description

Mathematical Representation

Input parameters from IEM: @, 105 (note: the

h, Ryo.R;, R2, R3, Ry, 11, 12, t; and t4.
Ho=ty s By =ty FLm, s s =ty +1

offset offset* offset*

th=t,+t

offset

Il sinusoidal arrival time is defined as ;, =1, 1 o prve )s

The five possible overlapping source waves are
denoted as SWO,, SWI,, SW2,, SW3,, & SW4, .

Set parameter AMT_EXP = FALSE
Process time series from time (note:t=Ak) t=1,t0

r=t,+1T,

max

2| Initialize source for time index k.

Calculate overlapping source waves at time index k
based upon time value .

Note: linear interpolation is utilized when
calculating AMT o between available sample
=7

points.

SWO=SWI, =SW2, =SW3, =SW4,=0
N = source wave index (N =0, 1, 2, 3, 4).

AI/ =t.’\' —tn

If t, <t <ththen

SWN, = AMT o XRN
=l

If 1), <1then

SWN, = AMT o X RN xsin[24t + @), |
1=

3| Calculate measurement extrapolation and
innovation (eqgs. (13)&(14) in Table I).

Ak=zk—2k

4| Obtain new estimate of the source AMT.

Note: In the PPD-IFM algorithm there is no
assumed extrapolation equation for the AMT.

AMT = AMT_y_ + Ay [H,

If r <1} then H, = RO

If r >, then H, = ROXsin[27ft + ¢, ]or
I/H, =cosecant|27ft + ¢,]/R0O

note: AMT,,_, = AMT_,, _,

5| In the PPD-IFM the maximum of the AMT or
source wave is assumed to occur within time 1.5T
(T=1/p).

Track AMT maximum (AMTyax).

If the AMT maximum exceeds 1.5T then there is an
early exit from the KF with an error flag.

6| When the AMT value drops below AMTy4x at time
index f.,. then apply exponential decay estimate.
AMT_EXP = TRUE

AMT, = AMT,_, xexp "7

7| Based upon new estimate of AMT; update SW(.

8| Let k = k+1 & iterate to step 2. Skip steps 4 and 5
if AMT_EXP = TRUE.

9| Calculate RMS error residual and return value to
IFM algorithm.

E =

knikl SWO, +SWI1, +SW2, ’
o +SW3, +SW4,

ERMS = VE/kl note: k() =[(J/A&kl =Tnmx/A

k=ko

and maximum ( f,ax) dominant frequency values. For each
iteration of the while loops, several samples are drawn from
the source wave parameters of w, tofset, and h and reflection
arrival times and coefficients utilizing a Monte Carlo technique.
Based on these samples, an error residual is calculated as
outlined in Table II and is stored as previously described in
step 2.

In stage 2 of the PPD-IFM, the top /V; results of stage 1 are
processed, utilizing the IFM algorithm. In this case, the analysis
windows (e.g., tigsT — 2 ms < tigsT < tipsT + 2 ms) are
specified around each parameter, several samples are drawn
(utilizing the previously outlined Monte Carlo technique), and
corresponding error residuals are calculated. The estimates
which give the lowest 13 error residuals are utilized within the
IFM algorithm for the purpose of specifying the initial simplex.
Stage 3 of the PPD-IFM is identical to that outlined in stage 2,

but in this case, the true sampling rate is utilized, and the top
N, results of stage 2 are processed.

To further reduce the possible solution space of the
PPD-IFM, two closely spaced seismograms are processed, si-
multaneously utilizing multithreading and making use of the
standard dual-core processor technology. For example, in a
typical downhole seismic investigation, the receivers are offset
by 1 m [12]-[16]. This 1-m offset is equivalent to a 10-ms
source time offset for a medium velocity of 100 m/s. It is
highly likely that two source waves that are offset by 10 ms are
identical. When processing two seismic traces simultaneously,
the PPD-IFM algorithm, after stages 2 and 3, determines the
top source wave estimates where the weighted rms difference
between the estimated seismograms and the true seismograms
over time window t; (source wave arrival time) to tg + Tinax
are minimized. The weight of the cost function is defined as the



absolute sum difference between the source wave parameters
(i.e., w, tofset. h, and time location TAMT max Of AMT 1ax).
The weight on the cost function is given as

weight = abs(f; — f2) + abs(T1aAMT max — T2AMT max)

+abs(h1 — ha) + abs(foffset1 — tofiset2). (17)

The minimum and maximum source wave attenuation values
are automatically estimated within the PPD-IFM algorithm
based on the user-specified minimum ( f,,;,) and maximum
(fmax) dominant frequency windows of the source.

A. Minimum Attenuation Value

The exponential decay is defined as X = Xope "2, If the
amplitude of the AMT is calculated when it decays to 0.05 (5%)
of the maximum value AMTy;ax, we have 0.05 = ¢ "2t or
hAt = 3. Since it can be assumed that the maximum source
length is 2.57 and that it will take at least 0.257 to reach
AMTy\ax from ¢ (as is the case with every sine wave), the time
for the source wave to decay to 5% of AMT)yjax is therefore at
most 2.257". This means that

hmin - 3/2-251—‘"1&): - 1-333fmin
if finin = 50 Hz then h,,;,, = 66.665/sec or 0.066665/ms.

B. Maximum Attenuation Value

Based on analytical source wave representations and numer-
ous real data examples it can be assumed that the time for the
source wave to decay to 5% of AMTyjax is at least 0.57". This
means that

hma.x - 3/0-51—111i11 - 6fmax
if finax =60 Hz then hyy,. = 360/s or 0.36/ms.

IV. PPD-IFM SIMULATION RESULTS

The implementation and performance of the PPD-IFM
algorithm i1s demonstrated by considering the analysis of two
challenging synthetic seismograms. The seismograms are chal-
lenging due to the fact that there are five closely spaced
reflection coefficients with dipoles in a high measurement noise
environment. The PPD-WE [6] algorithm would have difficulty
in processing this data set. This is due to the fact that the
seismograms have phase components that are similar to that of
the source wave to be extracted and the gradual decrease in the
quality of the estimated source waves due to the propagation of
errors [6]. The first seismogram was generated by convolving
the Berlage wave shown in Fig. 1 with the reflection coefficients
outlined in Fig. 9 to give the output shown in Fig. 10. The
second seismogram is generated by convolving the Berlage
wave in Fig. 1 with the reflection series shown in Fig. 11. The
resulting seismogram is shown in Fig. 12. Table III outlines the
reflection series parameters of the arrival time and amplitude
for seismograms 1 and 2.
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TABLE III
REFLECTION SERIES PARAMETERS

Seismogram |

Seismogram 2

Reflection Coefficients Reflection Coefficients
Time [ms] | Amplitude | Time [ms] | Amplitude
10 1.0 10 0.8

16 0.55 17 0.45

22 -0.625 25 -0.6

39 -0.5 42 -0.46

45 0.35 49 0.3

As shown in Figs. 9 and 11 and Table III, the reflection series
for seismograms 1 and 2 is very similar, with minor variations.
The similarity of the reflection series is to reflect the case
where we have recorded the seismic traces from two relatively
closely spaced receivers. This allows the implementation of the
weighted cost function. Although there are minor variations
between the reflection series of seismograms 1 and 2, the
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Fig. 15. PPD-IFM estimated source wave superimposed upon the true source
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Fig. 16. PPD-IFM estimated normalized seismogram superimposed upon the
true normalized seismogram for the time series shown in Fig. 13.

resulting seismograms have significant differences, as shown in
Figs. 10 and 12. The synthetic seismograms shown in Figs. 10
and 12 have Gauss—Markov [6], [8], [9] measurement noise
added, with the variance and time constants set to 10 units? / s2
and 0.01 ms, respectively. Figs. 13 and 14 show Figs. 10 and
12, respectively, with the additive Gauss—Markov noise.

The noisy seismic traces shown in Figs. 13 and 14 are pre-
processed with an eighth-order Butterworth 200-Hz low-pass
zero-phase digital filter applied. The filtered seismograms are
then fed into the PPD-IFM algorithm, with the parameters f,;i,,
fimax, and RT},;,, set to 40 Hz, 60 Hz, and 3 ms, respectively.

The estimated PPD-IFM normalized source wave for seis-
mogram 1 is shown in Fig. 15, superimposed upon the true-
noise-free (i.e., no additive Gauss-Markov measurement noise)
normalized source wave. Fig. 16 shows the estimated nor-
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Fig. 17. Error residuals for the PPD-IFM estimated source wave and true
source wave, and the PPD-IFM estimated seismogram and true seismogram
for the time series shown in Fig. 13.
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Fig. 18. PPD-IFM estimated reflection series superimposed on the true reflec-
tion series for the time series shown in Fig. 13.

malized seismogram superimposed upon the true normalized
seismogram with a corresponding rms error of 0.06 units.
Fig. 17 shows the error residuals for the PPD-IFM estimated
normalized source wave and true normalized source wave (as
shown in Fig. 15), and the PPD-IFM estimated normalized
seismogram and the true normalized seismogram (as shown in
Fig. 16). The PPD-IFM estimated reflection coefficients (su-
perimposed upon the true reflection coefficients) are shown in
Fig. 18 and are quantitatively compared with the true values in
Table IV. As shown in Figs. 15-18 and Table IV, the PPD-IFM
algorithm was able to obtain accurate estimates of the source
wave and reflection series for the seismogram shown in Fig. 13
and utilizing a weighted cost function.

The estimated PPD-IFM normalized source wave for seis-
mogram 2 is shown in Fig. 19, superimposed upon the true
normalized source wave. Fig. 20 shows the estimated nor-
malized seismogram superimposed upon the true normalized
seismogram with a corresponding rms error of 0.05 units.
Fig. 21 shows the error residuals for the PPD-IFM estimated
source wave and true source wave (as shown in Fig. 19), and the
PPD-IFM estimated normalized seismogram and the true nor-
malized seismogram (as shown in Fig. 20). The PPD-IFM
estimated reflection coefficients for the seismogram shown
in Fig. 14 are shown (superimposed upon the true reflection
coefficients) in Fig. 22 and are quantitatively compared with the
true values in Table V. The PPD-IFM algorithm again obtained
very accurate source waves and reflection series estimates
when processing the time series shown in Fig. 14 and when
implementing a weighted cost function.

The source wave estimates shown in Figs. 15 and 19 could
be utilized to deconvole the source wave from the seismogram
utilizing the water level technique (WLT) [1], [6] so that the
complete reflection series is obtained. The implementation of
the WLT is a fast and simple approach if there is a mini-
mal source wave variation within the seismogram. If a sig-
nificant source wave variation occurs within the seismogram,
then a recursive PPD-IFM approach could be utilized. In this



10

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE IV
COMPARING ESTIMATED AND TRUE REFLECTION SERIES PARAMETERS FOR SEISMOGRAM 1|

True Reflection Coefficients | Estimated Reflection Coefficients | Absolute Errors

Time [ms] Amplitude | Time [ms] Amplitude Time [ms] Amplitude
10 1.0 10 0.99 0 0.01

16 0.55 16.5 0.60 0.5 0.05

22 -0.625 21.5 -0.65 0.5 0.025

39 -0.5 39.2 -0.44 0.2 0.06

45 0.35 445 0.37 0.5 0.02
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Fig. 19. PPD-IFM estimated source wave superimposed upon the true source
wave for the time series shown in Fig. 14.
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Fig. 20. PPD-IFM estimated normalized seismogram superimposed upon the
true normalized seismogram for the time series shown in Fig. 14.
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Fig. 21. Error residuals for the PPD-IFM estimated source wave and true

source wave, and the PPD-IFM estimated seismogram and true seismogram
for the time series shown in Fig. 14.
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Fig. 22. PPD-IFM estimated reflection series for the time series shown
in Fig. 16.

case, the PPD-IFM algorithm is applied recursively, where the
PPD-IFM estimated seismograms over time 7, (as shown in
Figs. 16 and 20) are sequentially and chronologically extracted
from the seismogram under analysis until the total seismo-
gram has been processed and the complete reflection series
is estimated. Alternatively, the WLT technique could initially
be implemented until a time index ¢* is identified, where the
reflection coefficients change shape (signifying a source wave

time variance [1], [6]). The PPD-IFM algorithm could then be
reapplied at time index .

V. CONCLUSION

Seismic deconvolution is the most widely utilized signal
enhancement technique in seismic signal processing. Ideally,
by deconvolving the source wave from the recorded time series
data, only the reflection coefficients remain. A very challenging
problem in seismic deconvolution is blind deconvolution. In
this case, both the source wave and reflection coefficients are
assumed unknown.

This paper has outlined a more powerful formulation of
a previously published concept in BSD, referred to as PPD.
This new filter formulation is referred to as the PPD-IFM
algorithm. In the PPD-IFM filter formulation, an IFM algorithm
1s incorporated, which allows for a significantly more accurate
approach in estimating the source wave and corresponding
reflection series and addresses the limitations of the previous
versions of the PPD algorithm, such as the requirement of
specifying the phases of the overlapping source waves a priori.

Full details on the formulation and implementation of PPD-
IFM algorithm are provided within this paper. An important
component of the PPD-IFM algorithm is the modeling of the
source wave as an AMS. The AMS is demonstrated to be a
highly robust and accurate approximation of many analytical
and real representations of seismic source waves. In general
terms, in the PPD-IFM algorithm, the overlapping source waves
are treated as known inputs within a simplified Kalman filter
formulation based on the current source wave and reflection
series IFM parameter estimates. The source wave and reflection
series parameters are obtained by iteratively minimizing a cost
function that is defined to be the rms weighted difference
between the measured seismogram and the synthesized seismo-
gram within the IFM algorithm. It is assumed that there are very
low measurement noise and process noise due to the fact that
the seismic data can be preprocessed so that the signal-to-noise
ratio is increased significantly.

The IFM technique that is utilized within the PPD-IFM
algorithm is the DSM. The DSM in multidimensions has the
important property of not requiring derivatives of function
evaluations, and it can minimize nonlinear functions of more
than one independent variables. The specification of parameter
RT,i, (the minimum time separation between reflection coeffi-
cients) allows the investigator to exceed Sheriff’s and Geldart’s
A/4 vertical resolution and makes the PPD-IFM algorithm ideal
in identifying thin bed layering. Due to the fact that the KF is a
recursive filter, there are AMT checks that can be made for code
optimization (i.e., early exit from the KF algorithm). Examples
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TABLE V

COMPARING ESTIMATED AND TRUE REFLECTION SERIES PARAMETERS FOR SEISMOGRAM 2
True Reflection Coefficients | Estimated Reflection Coefficients | Absolute Errors
Time [ms] Amplitude | Time [ms] Amplitude Time [ms] Amplitude
10 0.8 10 0.72 0 0.08

17 0.45 17 0.42 0.0 0.03
25 -0.6 25 -0.51 0.0 0.09
42 -0.46 42 -0.44 0.0 0.02
49 0.3 49 0.28 0.0 0.02

of the in-line checks that can be carried out were outlined in
this paper.

The implementation and performance of the PPD-IFM
algorithm was demonstrated by considering very challeng-
ing synthetic seismograms which contained high variance
Gauss—Markov measurement noise. The seismograms were
challenging due to the fact that there were five closely spaced
reflection coefficients with dipoles in a high measurement
noise environment. It was shown that the PPD-IFM algorithm
was able to obtain accurate estimates of the source wave and
reflection series for the noisy seismograms.
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